Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phys Med ; 102: 79-87, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36137403

RESUMO

MRI is a non-invasive medical imaging modality that is sensitive to patient motion, which constitutes a major limitation in most clinical applications. Solutions may arise from the reduction of acquisition times or from motion-correction techniques, either prospective or retrospective. Benchmarking the latter methods requires labeled motion-corrupted datasets, which are uncommon. Up to our best knowledge, no protocol for generating labeled datasets of MRI images corrupted by controlled motion has yet been proposed. Hence, we present a methodology allowing the acquisition of reproducible motion-corrupted MRI images as well as validation of the system's performance by motion estimation through rigid-body volume registration of fast 3D echo-planar imaging (EPI) time series. A proof-of-concept is presented, to show how the protocol can be implemented to provide qualitative and quantitative results. An MRI-compatible video system displays a moving target that volunteers equipped with customized plastic glasses must follow to perform predefined head choreographies. Motion estimation using rigid-body EPI time series registration demonstrated that head position can be accurately determined (with an average standard deviation of about 0.39 degrees). A spatio-temporal upsampling and interpolation method to cope with fast motion is also proposed in order to improve motion estimation. The proposed protocol is versatile and straightforward. It is compatible with all MRI systems and may provide insights on the origins of specific motion artifacts. The MRI and artificial intelligence research communities could benefit from this work to build in-vivo labeled datasets of motion-corrupted MRI images suitable for training/testing any retrospective motion correction or machine learning algorithm.


Assuntos
Artefatos , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Plásticos , Estudos Prospectivos , Estudos Retrospectivos
2.
IEEE Rev Biomed Eng ; 12: 254-268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29994405

RESUMO

Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies.


Assuntos
Doenças Ósseas Metabólicas/diagnóstico por imagem , Diagnóstico por Imagem/tendências , Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico por imagem , Algoritmos , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/fisiopatologia , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/fisiopatologia , Humanos , Osteoporose/fisiopatologia , Fraturas por Osteoporose/fisiopatologia , Medição de Risco , Fatores de Risco , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/fisiopatologia
3.
Magn Reson Med ; 81(5): 2841-2857, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30565314

RESUMO

PURPOSE: Epitomizing the advantages of ultra short echo time and no chemical shift displacement error, high-resolution-free induction decay magnetic resonance spectroscopic imaging (FID-MRSI) sequences have proven to be highly effective in providing unbiased characterizations of metabolite distributions. However, its merits are often overshadowed in high-resolution settings by reduced signal-to-noise ratios resulting from the smaller voxel volumes procured by extensive phase encoding and the related acquisition times. METHODS: To address these limitations, we here propose an acquisition and reconstruction scheme that offers both implicit dataset denoising and acquisition acceleration. Specifically, a slice selective high-resolution FID-MRSI sequence was implemented. Spectroscopic datasets were processed to remove fat contamination, and then reconstructed using a total generalized variation (TGV) regularized low-rank model. We further measured reconstruction performance for random undersampled data to assess feasibility of a compressed-sensing SENSE acceleration scheme. Performance of the lipid suppression was assessed using an ad hoc phantom, while that of the low-rank TGV reconstruction model was benchmarked using simulated MRSI data. To assess real-world performance, 2D FID-MRSI acquisitions of the brain in healthy volunteers were reconstructed using the proposed framework. RESULTS: Results from the phantom and simulated data demonstrate that skull lipid contamination is effectively removed and that data reconstruction quality is improved with the low-rank TGV model. Also, we demonstrated that the presented acquisition and reconstruction methods are compatible with a compressed-sensing SENSE acceleration scheme. CONCLUSIONS: An original reconstruction pipeline for 2D 1 H-FID-MRSI datasets was presented that places high-resolution metabolite mapping on 3T MR scanners within clinically feasible limits.


Assuntos
Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Simulação por Computador , Compressão de Dados , Análise de Fourier , Voluntários Saudáveis , Humanos , Lipídeos/química , Modelos Estatísticos , Distribuição Normal , Imagens de Fantasmas , Espectrofotometria
4.
Comput Med Imaging Graph ; 68: 25-39, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885566

RESUMO

Osteoporosis is a bone disorder characterized by bone loss and decreased bone strength. The most widely used technique for detection of osteoporosis is the measurement of bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA). But DXA scans are expensive and not widely available in low-income economies. In this paper, we propose a low cost pre-screening tool for the detection of low bone mass, using cortical radiogrammetry of third metacarpal bone and trabecular texture analysis of distal radius from hand and wrist radiographs. An automatic segmentation algorithm to automatically locate and segment the third metacarpal bone and distal radius region of interest (ROI) is proposed. Cortical measurements such as combined cortical thickness (CCT), cortical area (CA), percent cortical area (PCA) and Barnett Nordin index (BNI) were taken from the shaft of third metacarpal bone. Texture analysis of trabecular network at the distal radius was performed using features obtained from histogram, gray level Co-occurrence matrix (GLCM) and morphological gradient method (MGM). The significant cortical and texture features were selected using independent sample t-test and used to train classifiers to classify healthy subjects and people with low bone mass. The proposed pre-screening tool was validated on two ethnic groups, Indian sample population and Swiss sample population. Data of 134 subjects from Indian sample population and 65 subjects from Swiss sample population were analysed. The proposed automatic segmentation approach shows a detection accuracy of 86% in detecting the third metacarpal bone shaft and 90% in accurately locating the distal radius ROI. Comparison of the automatic radiogrammetry to the ground truth provided by experts show a mean absolute error of 0.04 mm for cortical width of healthy group, 0.12 mm for cortical width of low bone mass group, 0.22 mm for medullary width of healthy group, and 0.26 mm for medullary width of low bone mass group. Independent sample t-test was used to select the most discriminant features, to be used as input for training the classifiers. Pearson correlation analysis of the extracted features with DXA-BMD of lumbar spine (DXA-LS) shows significantly high correlation values. Classifiers were trained with the most significant features in the Indian and Swiss sample data. Weighted KNN classifier shows the best test accuracy of 78% for Indian sample data and 100% for Swiss sample data. Hence, combined automatic radiogrammetry and texture analysis is shown to be an effective low cost pre-screening tool for early diagnosis of osteoporosis.


Assuntos
Diagnóstico Precoce , Mãos/diagnóstico por imagem , Mãos/fisiopatologia , Osteoporose/diagnóstico por imagem , Radiografia , Adulto , Algoritmos , Densidade Óssea , Bases de Dados Factuais , Feminino , Humanos , Índia , Pessoa de Meia-Idade , Suíça , Adulto Jovem
5.
Sensors (Basel) ; 18(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419781

RESUMO

Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.


Assuntos
Malária/diagnóstico , Animais , Humanos , Processamento de Imagem Assistida por Computador , Microscopia
6.
Med Image Anal ; 16(8): 1565-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22921305

RESUMO

The segmentation of MR images of the neonatal brain is an essential step in the study and evaluation of infant brain development. State-of-the-art methods for adult brain MRI segmentation are not applicable to the neonatal brain, due to large differences in structure and tissue properties between newborn and adult brains. Existing newborn brain MRI segmentation methods either rely on manual interaction or require the use of atlases or templates, which unavoidably introduces a bias of the results towards the population that was used to derive the atlases. We propose a different approach for the segmentation of neonatal brain MRI, based on the infusion of high-level brain morphology knowledge, regarding relative tissue location, connectivity and structure. Our method does not require manual interaction, or the use of an atlas, and the generality of its priors makes it applicable to different neonatal populations, while avoiding atlas-related bias. The proposed algorithm segments the brain both globally (intracranial cavity, cerebellum, brainstem and the two hemispheres) and at tissue level (cortical and subcortical gray matter, myelinated and unmyelinated white matter, and cerebrospinal fluid). We validate our algorithm through visual inspection by medical experts, as well as by quantitative comparisons that demonstrate good agreement with expert manual segmentations. The algorithm's robustness is verified by testing on variable quality images acquired on different machines, and on subjects with variable anatomy (enlarged ventricles, preterm- vs. term-born).


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Algoritmos , Tronco Encefálico/anatomia & histologia , Cerebelo/anatomia & histologia , Humanos , Recém-Nascido
7.
IEEE Trans Image Process ; 20(9): 2683-90, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21385669

RESUMO

Nonlocal means (NLM) is an effective denoising method that applies adaptive averaging based on similarity between neighborhoods in the image. An attractive way to both improve and speed-up NLM is by first performing a linear projection of the neighborhood. One particular example is to use principal components analysis (PCA) to perform dimensionality reduction. Here, we derive Stein's unbiased risk estimate (SURE) for NLM with linear projection of the neighborhoods. The SURE can then be used to optimize the parameters by a search algorithm or we can consider a linear expansion of multiple NLMs, each with a fixed parameter set, for which the optimal weights can be found by solving a linear system of equations. The experimental results demonstrate the accuracy of the SURE and its successful application to tune the parameters for NLM.

8.
Artigo em Inglês | MEDLINE | ID: mdl-18003446

RESUMO

The micro array are an experimental technique for parallel determination of molecular concentration. The image analysis is an important, time consuming and error prone step of the process. We describe here an automatic procedure able to analyze the micro array data and to accurately provide the level of concentration for each microRNA (miRNA). The proposed method has the advantage, compared to commercial products, to minimize the user interaction, leading to a more reproducible data analysis.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , MicroRNAs/análise , MicroRNAs/genética , Análise em Microsséries/métodos , Microscopia de Fluorescência/métodos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...