Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 33(9): 1793-1807.e9, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358431

RESUMO

Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Adulto , Células Endoteliais/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Patológica/metabolismo
2.
Cardiovasc Res ; 117(1): 256-270, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999325

RESUMO

AIMS: Cardiac ischaemia does not elicit an efficient angiogenic response. Indeed, lack of surgical revascularization upon myocardial infarction results in cardiomyocyte death, scarring, and loss of contractile function. Clinical trials aimed at inducing therapeutic revascularization through the delivery of pro-angiogenic molecules after cardiac ischaemia have invariably failed, suggesting that endothelial cells in the heart cannot mount an efficient angiogenic response. To understand why the heart is a poorly angiogenic environment, here we compare the angiogenic response of the cardiac and skeletal muscle using a lineage tracing approach to genetically label sprouting endothelial cells. METHODS AND RESULTS: We observed that overexpression of the vascular endothelial growth factor in the skeletal muscle potently stimulated angiogenesis, resulting in the formation of a massive number of new capillaries and arterioles. In contrast, response to the same dose of the same factor in the heart was blunted and consisted in a modest increase in the number of new arterioles. By using Apelin-CreER mice to genetically label sprouting endothelial cells we observed that different pro-angiogenic stimuli activated Apelin expression in both muscle types to a similar extent, however, only in the skeletal muscle, these cells were able to sprout, form elongated vascular tubes activating Notch signalling, and became incorporated into arteries. In the heart, Apelin-positive cells transiently persisted and failed to give rise to new vessels. When we implanted cancer cells in different organs, the abortive angiogenic response in the heart resulted in a reduced expansion of the tumour mass. CONCLUSION: Our genetic lineage tracing indicates that cardiac endothelial cells activate Apelin expression in response to pro-angiogenic stimuli but, different from those of the skeletal muscle, fail to proliferate and form mature and structured vessels. The poor angiogenic potential of the heart is associated with reduced tumour angiogenesis and growth of cancer cells.


Assuntos
Apelina/metabolismo , Linhagem da Célula , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Músculo Esquelético/irrigação sanguínea , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Neovascularização Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apelina/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Vasos Coronários/citologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Carga Tumoral , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718071

RESUMO

With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neovascularização Fisiológica , Reepitelização , Regeneração , Pele , Cicatrização , Ferimentos e Lesões , Animais , Matriz Extracelular/metabolismo , Humanos , Pele/lesões , Pele/metabolismo , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
4.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996132

RESUMO

Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-ß signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.


Assuntos
Fibrose/tratamento farmacológico , Haloperidol/farmacologia , Miofibroblastos/efeitos dos fármacos , Receptores sigma/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose/patologia , Haloperidol/uso terapêutico , Humanos , Microscopia Intravital/métodos , Pulmão/citologia , Pulmão/patologia , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miofibroblastos/patologia , Imagem Óptica/métodos , Cultura Primária de Células , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch1/metabolismo , Receptores sigma/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...