Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003512

RESUMO

Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833993

RESUMO

Glioblastoma remains one of the most aggressive cancers of the brain, warranting new methods for early diagnosis and more efficient treatment options. Circular RNAs (circRNAs) are rather new entities with increased stability compared to their linear counterparts that interact with proteins and act as microRNA sponges, among other functions. Herein, we provide a critical overview of the recently described glioblastoma-related circRNAs in the literature, focusing on their roles on glioblastoma cancer cell proliferation, survival, migration, invasion and metastasis, metabolic reprogramming, and therapeutic resistance. The main roles of circRNAs in regulating cancer processes are due to their regulatory roles in essential oncogenic pathways, including MAPK, PI3K/AKT/mTOR, and Wnt, which are influenced by various circRNAs. The present work pictures the wide implication of circRNAs in glioblastoma, thus highlighting their potential as future biomarkers and therapeutic targets/agents.


Assuntos
Glioblastoma , MicroRNAs , Humanos , RNA Circular/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...