Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 10(2): 580, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20161694

RESUMO

Transcriptional regulator protein TM1030 from the hyperthermophile Thermotoga maritima, as well as its complex with DNA, was crystallized at a wide range of temperatures. Crystallization plates were incubated at 4, 20, 37 and 50° C over 3 weeks. The best crystals of TM1030 in complex with DNA were obtained at 4, 20 and 37° C, while TM1030 alone crystallized almost equally well in all temperatures. The crystals grown at different temperatures were used for X-ray diffraction experiments and their structures were compared. Surprisingly, the models of TM1030 obtained from crystals grown at different temperatures are similar in quality. While there are some examples of structures of proteins grown at elevated temperatures in the PDB, these temperatures appear to be underrepresented. Our studies show that crystals of some proteins may be grown and are stable at broad range of temperatures. We suggest that crystallization experiments at elevated temperatures could be used as a standard part of the crystallization protocol.

2.
PLoS One ; 3(12): e4020, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19107194

RESUMO

BACKGROUND: SIR2 is an NAD(+)-dependent deacetylase [1]-[3] implicated in the regulation of lifespan in species as diverse as yeast [4], worms [5], and flies [6]. We previously reported that the level of SIRT1, the mammalian homologue of SIR2 [7], [8], is coupled to the level of mitotic activity in cells both in vitro and in vivo[9]. Cells from long-lived mice maintained SIRT1 levels of young mice in tissues that undergo continuous cell replacement by proliferating stem cells. Changes in SIRT1 protein level were not associated with changes in mRNA level, suggesting that SIRT1 could be regulated post-transcriptionally. However, other than a recent report on sumoylation [10] and identification of SIRT1 as a nuclear phospho-protein by mass spectrometry [11], post-translational modifications of this important protein have not been reported. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 residues in SIRT1 that are phosphorylated in vivo using mass spectrometry. Dephosphorylation by phosphatases in vitro resulted in decreased NAD(+)-dependent deacetylase activity. We identified cyclinB/Cdk1 as a cell cycle-dependent kinase that forms a complex with and phosphorylates SIRT1. Mutation of two residues phosphorylated by Cyclin B/Cdk1 (threonine 530 and serine 540) disturbs normal cell cycle progression and fails to rescue proliferation defects in SIRT1-deficient cells [12], [13]. CONCLUSIONS/SIGNIFICANCE: Pharmacological manipulation of SIRT1 activity is currently being tested as a means of extending lifespan in mammals. Treatment of obese mice with resveratrol, a pharmacological activator of SIRT1, modestly but significantly improved longevity and, perhaps more importantly, offered some protection against the development of type 2 diabetes mellitus and metabolic syndrome [14]-[16]. Understanding the endogenous mechanisms that regulate the level and activity of SIRT1, therefore, has obvious relevance to human health and disease. Our results identify phosphorylation by cell cycle dependent kinases as a major mechanism controlling the level and function of this sirtuin and complement recent reports of factors that inhibit [17], [18] and activate [19] SIRT1 by protein-protein interactions.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Sirtuínas/metabolismo , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Domínio Catalítico , Células Cultivadas , Ciclina B/metabolismo , Ciclinas/metabolismo , Ativação Enzimática , Camundongos , Modelos Moleculares , Fosforilação/fisiologia , Ligação Proteica , Serina/metabolismo , Sirtuína 1 , Sirtuínas/química , Sirtuínas/genética , Treonina/metabolismo
3.
Cryst Growth Des ; 8(11): 4054-4061, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19898606

RESUMO

The crystal structure of PA5185, a putative thioesterase from Pseudomonas aeruginosa strain PAO1, was solved using multi-wavelength anomalous diffraction to 2.4 Å. Analysis of the structure and information about the putative function of the protein were used to optimize crystallization conditions. The crystal growth was optimized by applying additives with chemical similarity to a fragment of a putative PA5185 substrate (CoA or its derivative). Using new crystallization conditions containing this function-biased set of additives, several new crystal forms were produced and structures of three of them (in three different space groups) were determined. One of the new crystal forms had an improved resolution limit of 1.9 Å, and another displayed an alternative conformation of the highly-conserved loop containing Asn26, which could play a physiological role. Surprisingly, none of the additives were ordered in the crystal structures. Application of function-biased additives could be used as a standard optimization protocol for producing improved diffraction, or new crystal forms, which may lead to better understanding of the biological functions of proteins.

4.
Protein Sci ; 16(7): 1360-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17586771

RESUMO

Crystal structures of two orthologs of the regulatory subunit of acetohydroxyacid synthase III (AHAS, EC 2.2.1.6) from Thermotoga maritima (TM0549) and Nitrosomonas europea (NE1324) were determined by single-wavelength anomalous diffraction methods with the use of selenomethionine derivatives at 2.3 A and 2.5 A, respectively. TM0549 and NE1324 share the same fold, and in both proteins the polypeptide chain contains two separate domains of a similar size. Each protein contains a C-terminal domain with ferredoxin-type fold and an N-terminal ACT domain, of which the latter is characteristic for several proteins involved in amino acid metabolism. The ferredoxin domain is stabilized by a calcium ion in the crystal structure of NE1324 and by a Mg(H2O)(6)2+ ion in TM0549. Both TM0549 and NE1324 form dimeric assemblies in the crystal lattice.


Assuntos
Acetolactato Sintase/química , Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Thermotoga maritima/genética
5.
J Struct Biol ; 159(3): 424-32, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17588774

RESUMO

The crystal structure of a putative transcriptional regulator protein TM1030 from Thermotoga maritima, a hyperthermophilic bacterium, was determined by an unusual multi-wavelength anomalous dispersion method at 2.0 A resolution, in which data from two different crystals and two different beamlines were used. The protein belongs to the tetracycline repressor TetR superfamily. The three-dimensional structure of TM1030 is similar to the structures of proteins that function as multidrug-binding transcriptional repressors, and contains a large solvent-exposed pocket similar to the drug-binding pockets present in those repressors. The asymmetric unit in the crystal structure contains a single protein chain and the twofold symmetry of the dimer is adopted by the crystal symmetry. The structure described in this paper is an apo- form of TM1030. Although it is known that the protein is significantly overexpressed during heat shock, its detailed function cannot be yet explained.


Assuntos
Proteínas de Bactérias/química , Cristalografia/métodos , Thermotoga maritima/metabolismo , Transativadores/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , DNA/química , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...