Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124188, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554692

RESUMO

Novel BODIPY derivatives possessing different styryl substituents were synthesized using different methods of Knoevenagel-type condensation with conventional heating and microwave radiation in two conditions. Microwave-assisted synthesis significantly reduces reaction time while enhancing its efficiency. The introduction of styryl substituents at the 3 and 5 positions of the BODIPY core resulted in a substantial bathochromic shift, which was affected by the substituents within styryl groups. Depending on the solvents, the BODIPY with unsubstituted styryl groups possesses absorption maxima (λAbs) between 616 and 626 nm. While the analogs containing electron-donating methoxy and methylthio groups exhibited bathochromically shifted bands with λAbs values in the 633-654 nm range. Fluorescence studies revealed intensive emission of tested BODIPYs with fluorescence quantum yields at the 0.41-0.83 range. On the other hand, singlet oxygen quantum yields were very low. In the electrochemical studies, the CV and DPV scans showed the presence of three redox processes. The calculated electrochemical gaps were in the range of 1.71-1.87 V.

2.
Molecules ; 28(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37894693

RESUMO

The present study investigates four iron(II/III) porphyrazines with extending pyrrolyl peripheral substituents to understand the impact of introduced phenyl rings on the macrocycle's electrochemical and spectroelectrochemical properties as well as their activity in oxidation reactions. The electrochemical studies showed six well-defined redox processes and quasi-reversible one-electron transfers-two originating from the iron cation and four related to the ring. Adding phenyl rings to the periphery increased the electrochemical gap by 0.1 V. The UV-Vis spectra changes were observed at the applied potential of -1.3 V with the presence of additional red-shifted bands. The oxidizing studies showed increased efficiency in the oxidation reaction of the reference substrate in the cases of Pz1 and Pz2 in both studied oxygen atom donors. The calculated reaction rates in t-BuOOH were 12.0 and 15.0 mmol/min, respectively, for Pz1 and Pz2, compared to 6.4 for Pz3 and 1.8 mmol/min for Pz4. The study identified potential applications for these porphyrazines in mimicking cytochrome P450 prosthetic groups for oxidation and hydroxylation reactions in the future.

3.
Eur J Med Chem ; 261: 115820, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37776575

RESUMO

Epigallocatechin gallate (EGCG) is a polyphenol present in green tea (Camellia sinensis), which has revealed anti-cancer effects toward a variety of cancer cells in vitro and protective potential against neurodegenerative diseases such as Alzheimer's and Parkinson's. Unfortunately, EGCG presents disappointing bioavailability after oral administration, primarily due to its chemical instability and poor absorption. Due to these limitations, EGCG is currently not used in medication, but only as a dietary supplement in the form of green tea extract. Therefore, it needs further modifications before being considered suitable for extensive medical applications. In this article, we review the scientific literature about EGCG derivatives focusing on their biological properties and potential medical applications. The most common chemical modifications of epigallocatechin gallate rely on introducing fatty acid chains or sugar molecules to its chemical structure to modify solubility. Another frequently employed procedure is based on blocking EGCG's hydroxyl groups with various substituents. Novel derivatives reveal interesting properties, of which, antioxidant, anti-inflammatory, antitumor and antimicrobial, are especially important. It is worth noting that the most promising EGCG derivatives present higher stability and activity than base EGCG.


Assuntos
Camellia sinensis , Catequina , Polifenóis/farmacologia , Catequina/farmacologia , Chá/química , Camellia sinensis/química , Antioxidantes/farmacologia
4.
Nanomaterials (Basel) ; 13(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177076

RESUMO

Flavonoids are polyphenolic compounds widely occurring throughout the plant kingdom. They are biologically active and have many medical applications. Flavonoids reveal chemopreventive, anticarcinogenic, and antioxidant properties, as well as being able to modulate the immune system response and inhibit inflammation, angiogenesis, and metastasis. Polyphenols are also believed to reverse multidrug resistance via various mechanisms, induce apoptosis, and activate cell death signals in tumor cells by modulating cell signaling pathways. The main limitation to the broader usage of flavonoids is their low solubility, poor absorption, and rapid metabolism. To tackle this, the combining of flavonoids with nanocarriers could improve their bioavailability and create systems of wider functionalities. Recently, interest in hybrid materials based on combinations of metal nanoparticles with flavonoids has increased due to their unique physicochemical and biological properties, including improved selectivity toward target sites. In addition, flavonoids have further utilities, even in the initial step of preparation of metal nanomaterials. The review offers knowledge on multiple possibilities of the synthesis of flavonoid-metal nanoparticle conjugates, as well as presents some of their features such as size, shape, surface charge, and stability. The flavonoid-metal nanoparticles are also discussed regarding their biological properties and potential medical applications.

5.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431922

RESUMO

Iron(III) porphyrazines containing peripheral 2,5-dimethyl-, 2-methyl-5-phenyl-, and 2,3,5-triphenyl-1H-pyrrol-1-yl substituents were synthesized and subjected to physicochemical characterization. This was accomplished by high-resolution mass spectrometry, nuclear magnetic resonance (as diamagnetic Fe(II) derivatives), HPLC purity analysis, and UV-Vis spectroscopy, accompanied by the solvation study in dichloromethane and pyridine. X-ray structure analysis was performed for a single crystal of the previously obtained 2,5-diphenyl-substituted derivative of porphyrazine complex (5d). The octahedral geometries of iron cation, present in the porphyrazine core, influenced the packing mode of molecules in the crystals. Mössbauer studies, performed for solid samples of iron porphyrazines, indicated that low-spin reduced iron states might occupy low- or high-symmetry binding sites. It was found that the hyperfine parameters and the subsequent contribution of the iron cations depend on the number of phenyl groups surrounding the pyrrolyl moiety. For iron(II) porphyrazine 2,3,5-triphenylpyrrol-1-yl substituents (5b), a high-spin ferrous state fraction was observed. Temperature-dependent measurements showed that the freed rotation of the peripheral porphyrazine ligands and the increased flexibility of the macrocycle ring result in the Fe2+ ion being stabilized in a diamagnetic state at a binding site of high symmetry at room temperature in the solid state. This process is most probably stimulated by the range of collective motions of the polymeric ribbons consisting of iron(II) porphyrazines observed in the X-ray.


Assuntos
Compostos Ferrosos , Ferro , Ligantes , Espectroscopia de Ressonância Magnética , Sítios de Ligação , Cátions , Compostos Ferrosos/química
6.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295343

RESUMO

Magnesium(II) sulfanyl porphyrazine with peripheral morpholinethoxy substituents was embedded on the surface of titanium(IV) dioxide nanoparticles. The obtained nanocomposites were characterized with the use of particle size and distribution (NTA analysis), electron microscopy (SEM), thermal analysis (TGA), FTIR-ATR spectroscopy, and X-ray powder diffraction (XRD). The measured particle size of the obtained material was 327.4 ± 15.5 nm. Analysis with XRD showed no visible changes in the crystallinity of the material after deposition of porphyrazine on the TiO2 surface. However, SEM images revealed noticeable changes in the morphology of the obtained hybrid material: higher aggregation and less ordered structure of the aggregates. The TGA analysis revealed the lost 3.6% (0.4 mg) of the mass of obtained material in the range 250-550 °C. In the FTIR-ATR analysis, C-H stretching vibratins in the range of 3000-2800 cm-1, originating from porphyrazine moieties, were detected. The photocatalytic applicability of the nanomaterial was assessed in photodegradation studies of methylene blue and bisphenol A as reference environmental pollutants. In addition, the photocatalytic degradation of carbamazepine with porphyrazine/TiO2 hybrids as photocatalysts was studied, accompanied by an HPLC chromatography assessment of photodegradation. In total, 43% of the initial concentration was achieved in the case of bisphenol A, after 4 h of irradiation, whereas 57% was achieved in the case of carbamazepine. In each photodegradation reaction, the activity of the obtained photocatalytic nanomaterial was proved with almost linear degradation. The photodegradation reaction rate constants were calculated, and revealed 5.75 × 10-5 s-1 for bisphenol A and 5.66 × 10-5 s-1 for carbamazepine.

7.
Materials (Basel) ; 15(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744240

RESUMO

Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections.

8.
Nanomaterials (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34835626

RESUMO

Phthalocyanines and porphyrazines as macrocyclic aza-analogues of well-known porphyrins were deposited on diverse carbon-based nanomaterials and investigated as sensing devices. The extended π-conjugated electron system of these macrocycles influences their ability to create stable hybrid systems with graphene or carbon nanotubes commonly based on π-π stacking interactions. During a 15-year period, the electrodes modified by deposition of these systems have been applied for the determination of diverse analytes, such as food pollutants, heavy metals, catecholamines, thiols, glucose, peroxides, some active pharmaceutical ingredients, and poisonous gases. These procedures have also taken place, on occasion, in the presence of various polymers, ionic liquids, and other moieties. In the review, studies are presented that were performed for sensing purposes, involving azaporphyrins embedded on graphene, graphene oxide or carbon nanotubes (both single and multi-walled ones). Moreover, possible methods of electrode fabrication, limits of detection of each analyte, as well as examples of macrocyclic compounds applied as sensing materials, are critically discussed.

9.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062815

RESUMO

Aza-porphyrinoids exhibit distinct spectral properties in UV-Vis, and they are studied in applications such as photosensitizers in medicine and catalysts in technology. The use of appropriate peripheral substituents allows the modulation of their physicochemical properties. Phthalocyanine and sulfanyl porphyrazine octa-substituted with 4-(butoxycarbonyl)phenyloxy moieties were synthesized and characterized using UV-Vis and NMR spectroscopy, as well as mass spectrometry. A comparison of porphyrazine with phthalocyanine aza-porphyrinoids revealed that phthalocyanine macrocycle exhibits higher singlet oxygen generation quantum yields, reaching the value of 0.29 in DMF. After both macrocycles had been deposited on titanium dioxide nanoparticles P25, the cytotoxicities and photocytotoxicities of the prepared materials were studied using a Microtox® acute toxicity test. The highest cytotoxicity occurred after irradiation with a red light for the material composed of phthalocyanine deposited on titania nanoparticles.


Assuntos
Indóis/química , Nanopartículas Metálicas/química , Parabenos/química , Porfirinas/química , Titânio/química , Anti-Infecciosos/administração & dosagem , Antineoplásicos/administração & dosagem , Sobrevivência Celular , Desenho de Fármacos , Isoindóis , Espectroscopia de Ressonância Magnética , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Solventes , Testes de Toxicidade , Raios Ultravioleta
10.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920778

RESUMO

The syntheses, spectral UV-Vis, NMR, and electrochemical as well as photocatalytic properties of novel magnesium(II) and zinc(II) symmetrical sulfanyl porphyrazines with 2-(morpholin-4-yl)ethylsulfanyl peripheral substituents are presented. Both porphyrazine derivatives were synthesized in cyclotetramerization reactions and subsequently embedded on the surface of commercially available P25 titanium(IV) oxide nanoparticles. The obtained macrocyclic compounds were broadly characterized by ESI MS spectrometry, 1D and 2D NMR techniques, UV-Vis spectroscopy, and subjected to electrochemical studies. Both hybrid materials, consisting of porphyrazine derivatives embedded on the titanium(IV) oxide nanoparticles' surface, were characterized in terms of particle size and distribution. Next, they were subjected to photocatalytic studies with 1,3-diphenylisobenzofuran, a known singlet oxygen quencher. The applicability of the obtained hybrid material consisting of titanium(IV) oxide P25 nanoparticles and magnesium(II) porphyrazine derivative was assessed in photocatalytic studies with selected active pharmaceutical ingredients, such as diclofenac sodium salt and ibuprofen.


Assuntos
Eletroquímica/métodos , Nanopartículas/química , Titânio/química , Catálise , Diclofenaco/química , Morfolinas/química , Oxigênio Singlete/química
11.
J Inorg Biochem ; 172: 67-79, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28433834

RESUMO

Photodynamic therapy involves the use of a photosensitizer that is irradiated with visible light in the presence of oxygen, resulting in the formation of reactive oxygen species. A novel phthalocyanine derivative, the quaternary iodide salt of magnesium(II) phthalocyanine with N-methyl morpholiniumethoxy substituents, was synthesized, and characterized. The techniques used included mass spectrometry (MALDI TOF), UV-vis, NMR spectroscopy, and photocytotoxicity against bacteria, fungi and cancer cells. The phthalocyanine derivative possessed typical characteristics of compounds of the phthalocyanine family but the effect of quaternization was observed on the optical properties, especially in terms of absorption efficiency. The results of the photodynamic antimicrobial effect study demonstrated that cationic phthalocyanine possesses excellent photodynamic activity against planktonic cells of both Gram-positive and Gram-negative bacteria. The bactericidal effect was dose-dependent and all bacterial strains tested were killed to a significant degree by irradiated phthalocyanine at a concentration of 1×10-4M. There were no significant differences in the susceptibility of Gram-positive and Gram-negative bacteria to the applied photosensitizer. The photosensitivity of bacteria in the biofilm was lower than that in planktonic form. No correlation was found between the degree of biofilm formation and susceptibility to antimicrobial photodynamic inactivation. The anticancer activity of the novel phthalocyanine derivative was tested using A549 adenocarcinomic alveolar basal epithelial cells and the human oral squamous cell carcinoma cells derived from tongue (HSC3) or buccal mucosa (H413). No significant decrease in cell viability was observed under different conditions or with different formulations of the compound.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Indóis/química , Indóis/farmacologia , Morfolinas/química , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isoindóis , Lítio/química , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...