Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 20: 39-53, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33335946

RESUMO

During normal- and patho-physiological situations, the behavior of the beta2-adrenoreceptor (ß2AR) is influenced by polymorphic variants. The functional impact of such polymorphisms has been suggested from data derived from genetic association studies, in vitro experiments with primary cells, and transgenic overexpression models. However, heterogeneous genetic background and non-physiological transgene expression levels confound interpretation, leading to conflicting mechanistic conclusions. To overcome these limitations, we used CRISPR/Cas9 gene editing technology in human pluripotent stem cells (hPSCs) to create a unique suite of four isogenic homozygous variants at amino acid positions 16(G/R) and 27(G/Q), which reside in the N terminus of the ß2AR. By producing cardiomyocytes from these hPSC lines, we determined that at a functional level ß2AR signaling dominated over ß1AR . Examining changes in beat rates and responses to isoprenaline, Gi coupling, cyclic AMP (cAMP) production, downregulation, and desensitization indicated that responses were often heightened for the GE variant, implying differential dominance of both polymorphic location and amino acid substitution. This finding was corroborated, since GE showed hypersensitivity to doxorubicin-induced cardiotoxicity relative to GQ and RQ variants. Thus, understanding the effect of ß2AR polymorphisms on cardiac response to anticancer therapy may provide a route for personalized medicine and facilitate immediate clinical impact.

2.
Cells ; 9(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053822

RESUMO

The ability to differentiate induced-pluripotent stem cells into cardiomyocytes (iPSC-CMs) has opened up novel avenues for potential cardiac therapies. However, iPSC-CMs exhibit a range of somewhat immature functional properties. This study explored the development of the beta-adrenergic receptor (ßAR) pathway, which is crucial in regulating contraction and signifying the health and maturity of myocytes. We explored the compartmentation of ß2AR-signalling and phosphodiesterases (PDEs) in caveolae, as functional nanodomains supporting the mature phenotype. Förster Resonance Energy Transfer (FRET) microscopy was used to study the cyclic adenosine monophosphate (cAMP) levels in iPSC-CMs at day 30, 60, and 90 following ßAR subtype-specific stimulation. Subsequently, the PDE2, PDE3, and PDE4 activity was investigated using specific inhibitors. Cells were treated with methyl-ß-cyclodextrin (MßCD) to remove cholesterol as a method of decompartmentalising ß2AR. As iPSC-CMs mature with a prolonged culture time, the caveolae density is increased, leading to a reduction in the overall cytoplasmic cAMP signal stimulated through ß2AR (but not ß1AR). Pan-phosphodiesterase inhibition or caveolae depletion leads to an increase in the ß2AR-stimulated cytoplasmic cAMP. Moreover, with time in culture, the increase in the ßAR-dependent cytoplasmic cAMP becomes more sensitive to cholesterol removal. The regulation of the ß2AR response by PDE2 and 4 is similarly increased with the time in culture. We conclude that both the ß2AR and PDEs are restricted to the caveolae nanodomains, and thereby exhibit a tighter spatial restriction over the cAMP signal in late-stage compared to early iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Cavéolas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Insuficiência Cardíaca/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
3.
Stem Cell Reports ; 3(5): 905-14, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25418732

RESUMO

Cardiomyocytes from human embryonic stem cells (hESC-CMs) and induced pluripotent stem cells (hiPSC-CMs) represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR) agonist phenylephrine (PE) compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease.


Assuntos
Adrenérgicos/farmacologia , Tamanho Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Hipertrofia , Imidazóis/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoproterenol/farmacologia , Microscopia Confocal , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Stem Cells Dev ; 23(5): 467-76, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24192059

RESUMO

Cardiac cell replacement therapy by using human embryonic stem cell (hESC) derivatives remains a potential approach to regenerate myocardium. The major hurdles to clinical application of this technology are immunogenicity and post-transplantation cell death. Here we examined the effects of calcineurin-targeting immunosuppressants cyclosporine A (CsA) and FK506, as well as rapamycin and a selective inhibitor of calcineurin-binding downstream nuclear factor of activated T-cell (NFAT) transcription factor VIVIT on the proliferative activity, function, and survival of hESC-derived cardiomyocytes (hESC-CM) and endothelial cells (hESC-EC) in culture. As shown by automated microscopy, treatments with CsA, FK506, and rapamycin all decreased proliferation, reducing the percentage of hESC-CM and hESC-EC with the mitotic marker Ki67(+) by as much as 60% and 74%, respectively. Administration of the cell permeable analogue 11R-VIVIT protein did not modulate their proliferative activity. All immunosuppressants reversed the proapoptotic effect of chelerythrine in hESC-CM demonstrating an inhibitory role of calcineurin/NFAT and mammalian target of rapamycin (mTOR) pathways in hESC-CM survival (using apoptotic marker caspase-3), whereas the protection was less obvious in hESC-EC exposed to H2O2. Immunosuppressants did not affect cell viability in hESC-EC. Our results show that immunosuppressants reduce proliferation, while offsetting cell loss to a smaller extent by reduction in apoptosis of hESC-CM. Immunosuppressant therapy would be compatible with stem cell transplantation, but the resulting reduction in graft expansion capabilities would potentially necessitate implantation of increased cell numbers when immunosuppressants are given. The effects of NFAT-binding immunosuppressant molecules, which do not affect hESC-CM proliferation, may point the way forward for new classes of compounds better suited to cell implantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Calcineurina/metabolismo , Células Cultivadas , Ciclosporina/administração & dosagem , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Imunossupressores/administração & dosagem , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/metabolismo , Sirolimo/administração & dosagem , Transplante de Células-Tronco , Tacrolimo/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...