Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Ment Health ; 4(1): 11, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573526

RESUMO

The clinical burden of mental illness, in particular schizophrenia and bipolar disorder, are driven by frequent chronic courses and increased mortality, as well as the risk for comorbid conditions such as cardiovascular disease and type 2 diabetes. Evidence suggests an overlap of molecular pathways between psychotic disorders and somatic comorbidities. In this study, we developed a computational framework to perform comorbidity modeling via an improved integrative unsupervised machine learning approach based on multi-rank non-negative matrix factorization (mrNMF). Using this procedure, we extracted molecular signatures potentially explaining shared comorbidity mechanisms. For this, 27 case-control microarray transcriptomic datasets across multiple tissues were collected, covering three main categories of conditions including psychotic disorders, cardiovascular diseases and type II diabetes. We addressed the limitation of normal NMF for parameter selection by introducing multi-rank ensembled NMF to identify signatures under various hierarchical levels simultaneously. Analysis of comorbidity signature pairs was performed to identify several potential mechanisms involving activation of inflammatory response auxiliarily interconnecting angiogenesis, oxidative response and GABAergic neuro-action. Overall, we proposed a general cross-cohorts computing workflow for investigating the comorbid pattern across multiple symptoms, applied it to the real-data comorbidity study on schizophrenia, and further discussed the potential for future application of the approach.

2.
J Clin Med ; 11(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233841

RESUMO

Excess labile heme, occurring under hemolytic conditions, displays a versatile modulator in the blood coagulation system. As such, heme provokes prothrombotic states, either by binding to plasma proteins or through interaction with participating cell types. However, despite several independent reports on these effects, apparently contradictory observations and significant knowledge gaps characterize this relationship, which hampers a complete understanding of heme-driven coagulopathies and the development of suitable and specific treatment options. Thus, the computational exploration of the complex network of heme-triggered effects in the blood coagulation system is presented herein. Combining hemostasis- and heme-specific terminology, the knowledge available thus far was curated and modeled in a mechanistic interactome. Further, these data were incorporated in the earlier established heme knowledge graph, "HemeKG", to better comprehend the knowledge surrounding heme biology. Finally, a pathway enrichment analysis of these data provided deep insights into so far unknown links and novel experimental targets within the blood coagulation cascade and platelet activation pathways for further investigation of the prothrombotic nature of heme. In summary, this study allows, for the first time, a detailed network analysis of the effects of heme in the blood coagulation system.

3.
NAR Genom Bioinform ; 3(3): lqab087, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34568823

RESUMO

The past decades have brought a steady growth of pathway databases and enrichment methods. However, the advent of pathway data has not been accompanied by an improvement in interoperability across databases, hampering the use of pathway knowledge from multiple databases for enrichment analysis. While integrative databases have attempted to address this issue, they often do not account for redundant information across resources. Furthermore, the majority of studies that employ pathway enrichment analysis still rely upon a single database or enrichment method, though the use of another could yield differing results. These shortcomings call for approaches that investigate the differences and agreements across databases and methods as their selection in the design of a pathway analysis can be a crucial step in ensuring the results of such an analysis are meaningful. Here we present DecoPath, a web application to assist in the interpretation of the results of pathway enrichment analysis. DecoPath provides an ecosystem to run enrichment analysis or directly upload results and facilitate the interpretation of results with custom visualizations that highlight the consensus and/or discrepancies at the pathway- and gene-levels. DecoPath is available at https://decopath.scai.fraunhofer.de, and its source code and documentation can be found on GitHub at https://github.com/DecoPath/DecoPath.

4.
Biomolecules ; 11(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925394

RESUMO

The SARS-CoV-2 outbreak was declared a worldwide pandemic in 2020. Infection triggers the respiratory tract disease COVID-19, which is accompanied by serious changes in clinical biomarkers such as hemoglobin and interleukins. The same parameters are altered during hemolysis, which is characterized by an increase in labile heme. We present two computational-experimental approaches aimed at analyzing a potential link between heme-related and COVID-19 pathophysiologies. Herein, we performed a detailed analysis of the common pathways induced by heme and SARS-CoV-2 by superimposition of knowledge graphs covering heme biology and COVID-19 pathophysiology. Focus was laid on inflammatory pathways and distinct biomarkers as the linking elements. In a second approach, four COVID-19-related proteins, the host cell proteins ACE2 and TMPRSS2 as well as the viral proteins 7a and S protein were computationally analyzed as potential heme-binding proteins with an experimental validation. The results contribute to the understanding of the progression of COVID-19 infections in patients with different clinical backgrounds and may allow for a more individual diagnosis and therapy in the future.


Assuntos
COVID-19/metabolismo , Heme/metabolismo , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Biologia Computacional , Hemólise , Interações Hospedeiro-Patógeno , Humanos , Inflamação/metabolismo , Inflamação/patologia , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Mapas de Interação de Proteínas , Serina Endopeptidases/metabolismo , Proteínas Virais/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-27554092

RESUMO

Success in extracting biological relationships is mainly dependent on the complexity of the task as well as the availability of high-quality training data. Here, we describe the new corpora in the systems biology modeling language BEL for training and testing biological relationship extraction systems that we prepared for the BioCreative V BEL track. BEL was designed to capture relationships not only between proteins or chemicals, but also complex events such as biological processes or disease states. A BEL nanopub is the smallest unit of information and represents a biological relationship with its provenance. In BEL relationships (called BEL statements), the entities are normalized to defined namespaces mainly derived from public repositories, such as sequence databases, MeSH or publicly available ontologies. In the BEL nanopubs, the BEL statements are associated with citation information and supportive evidence such as a text excerpt. To enable the training of extraction tools, we prepared BEL resources and made them available to the community. We selected a subset of these resources focusing on a reduced set of namespaces, namely, human and mouse genes, ChEBI chemicals, MeSH diseases and GO biological processes, as well as relationship types 'increases' and 'decreases'. The published training corpus contains 11 000 BEL statements from over 6000 supportive text excerpts. For method evaluation, we selected and re-annotated two smaller subcorpora containing 100 text excerpts. For this re-annotation, the inter-annotator agreement was measured by the BEL track evaluation environment and resulted in a maximal F-score of 91.18% for full statement agreement. In addition, for a set of 100 BEL statements, we do not only provide the gold standard expert annotations, but also text excerpts pre-selected by two automated systems. Those text excerpts were evaluated and manually annotated as true or false supportive in the course of the BioCreative V BEL track task.Database URL: http://wiki.openbel.org/display/BIOC/Datasets.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento de Linguagem Natural , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...