Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 31(4): 587-598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29418035

RESUMO

The tree of life is highly asymmetrical in its clade wise species richness, and this has often been attributed to variation in diversification rates either across time or lineages. Variations across lineages are usually associated with traits that increase lineage diversification. Certain traits can also hinder diversification by increasing extinction, and such traits are called evolutionary dead ends. Ecological specialization has usually been considered as an evolutionary dead end. However, recent analyses of specializations along single axes have provided mixed support for this model. Here, we test if fossoriality, a trait that forces specialization at multiple axes, acts as an evolutionary dead end in squamates (lizards and snakes) using recently developed phylogenetic comparative methods. We show that fossoriality is an evolutionary dead end in snakes but not in lizards. Fossorial snakes exhibit reduced speciation and increased extinction compared to nonfossorial snakes. Our analysis also indicates that transition rates from fossoriality to nonfossoriality in snakes are significantly lower than transition rates from nonfossoriality to fossoriality. Overall our results suggest that broad-scale ecological interactions that lead to specialization at multiple axes limit diversification.


Assuntos
Evolução Biológica , Serpentes , Animais , Ecossistema
2.
J Evol Biol ; 26(10): 2095-106, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23909947

RESUMO

Molecular studies of natural populations are often designed to detect and categorize hidden layers of cryptic diversity, and an emerging pattern suggests that cryptic species are more common and more widely distributed than previously thought. However, these studies are often decoupled from ecological and behavioural studies of species divergence. Thus, the mechanisms by which the cryptic diversity is distributed and maintained across large spatial scales are often unknown. In 1988, it was discovered that the common Eurasian Wood White butterfly consisted of two species (Leptidea sinapis and Leptidea reali), and the pair became an emerging model for the study of speciation and chromosomal evolution. In 2011, the existence of a third cryptic species (Leptidea juvernica) was proposed. This unexpected discovery raises questions about the mechanisms preventing gene flow and about the potential existence of additional species hidden in the complex. Here, we compare patterns of genetic divergence across western Eurasia in an extensive data set of mitochondrial and nuclear DNA sequences with behavioural data on inter- and intraspecific reproductive isolation in courtship experiments. We show that three species exist in accordance with both the phylogenetic and biological species concepts and that additional hidden diversity is unlikely to occur in Europe. The Leptidea species are now the best studied cryptic complex of butterflies in Europe and a promising model system for understanding the formation of cryptic species and the roles of local processes, colonization patterns and heterospecific interactions for ecological and evolutionary divergence.


Assuntos
Borboletas/genética , Variação Genética , Isolamento Reprodutivo , Animais , Borboletas/fisiologia , DNA/química , DNA Mitocondrial/química , Fluxo Gênico , Marcadores Genéticos , Geografia , Filogenia , Análise de Sequência de DNA , Comportamento Sexual Animal
3.
J Evol Biol ; 24(10): 2173-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21745252

RESUMO

Experimental work on Polygonia c-album, a temperate polyphagous butterfly species, has shown that Swedish, Belgian, Norwegian and Estonian females are generalists with respect to host-plant preference, whereas females from UK and Spain are specialized on Urticaceae. Female preference is known to have a strong genetic component. We test whether the specialist and generalist populations form respective genetic clusters using data from mitochondrial sequences and 10 microsatellite loci. Results do not support this hypothesis, suggesting that the specialist and generalist traits have evolved more than once independently. Mitochondrial DNA variation suggests a rapid expansion scenario, with a single widespread haplotype occurring in high frequency, whereas microsatellite data indicate strong differentiation of the Moroccan population. Based on a comparison of polymorphism in the mitochondrial data and sequences from a nuclear gene, we show that the diversity in the former is significantly less than that expected under neutral evolution. Furthermore, we found that almost all butterfly samples were infected with a single strain of Wolbachia, a maternally inherited bacterium. We reason that indirect selection on the mitochondrial genome mediated by a recent sweep of Wolbachia infection has depleted variability in the mitochondrial sequences. We also surmise that P. c-album could have expanded out of a single glacial refugium and colonized Morocco recently.


Assuntos
Borboletas/microbiologia , Wolbachia/fisiologia , Animais , Borboletas/genética , DNA Mitocondrial/química , Feminino , Masculino , Repetições de Microssatélites , Filogeografia , Polimorfismo Genético , Dinâmica Populacional , Análise de Sequência de DNA
4.
J Evol Biol ; 20(6): 2181-91, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17887973

RESUMO

The relative importance of dispersal and vicariance in the diversification of taxa has been much debated. Within butterflies, a few studies published so far have demonstrated vicariant patterns at the global level. We studied the historical biogeography of the genus Junonia (Nymphalidae: Nymphalinae) at the intercontinental level based on a molecular phylogeny. The genus is distributed over all major biogeographical regions of the world except the Palaearctic. We found dispersal to be the dominant process in the diversification of the genus. The genus originated and started diversifying in Africa about 20 Ma and soon after dispersed into Asia possibly through the Arabian Peninsula. From Asia, there were dispersals into Africa and Australasia, all around 5 Ma. The origin of the New World species is ambiguous; the ancestral may have dispersed from Asia via the Beringian Strait or from Africa over the Atlantic, about 3 Ma. We found no evidence for vicariance at the intercontinental scale. We argue that dispersal is as important as vicariance, if not more, in the global diversification of butterflies.


Assuntos
Borboletas/classificação , Borboletas/genética , África , Animais , Especiação Genética , Geografia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...