Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 37(3): 274-282, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300757

RESUMO

The persistence of non-neutral trait polymorphism is enigmatic because stabilizing selection is expected to deplete variation. In cryptically coloured prey, negative frequency-dependent selection due to search image formation by predators has been proposed to favour rare variants, promoting polymorphism. However, in a heterogeneous environment, locally varying disruptive selection favours patch type-specific optima, resulting in spatial segregation of colour variants. Here, we address whether negative frequency-dependent selection can overcome selection posed by habitat heterogeneity to promote local polymorphism using an individual-based model. In addition, we compare how prey and predator mobility may modify the outcome. Our model revealed that frequency-dependent predation could strongly promote local prey polymorphism, but only when differences between morphs in patch-specific fitness were small. The effect of frequency-dependent predation depended on the predator adjustment of search image and was hampered by the prey population structure. Gene flow due to prey movement counteracted local selection, promoted local polymorphism to some extent, and relaxed the conditions for polymorphism due to frequency-dependent predation. Importantly, abrupt spatial changes in morph frequencies decreased the probability that mobile frequency-dependent predators could maintain local prey polymorphism. Overall, our study suggests that in a spatially heterogeneous environment, negative frequency-dependent selection may help maintain local polymorphism but only under a limited range of conditions.


Assuntos
Fluxo Gênico , Polimorfismo Genético , Animais , Cor , Fenótipo , Comportamento Predatório
2.
Mol Phylogenet Evol ; 178: 107651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306995

RESUMO

Uropeltidae is a clade of small fossorial snakes (ca. 64 extant species) endemic to peninsular India and Sri Lanka. Uropeltid taxonomy has been confusing, and the status of some species has not been revised for over a century. Attempts to revise uropeltid systematics and undertake evolutionary studies have been hampered by incompletely sampled and incompletely resolved phylogenies. To address this issue, we take advantage of historical museum collections, including type specimens, and apply genome-wide shotgun (GWS) sequencing, along with recent field sampling (using Sanger sequencing) to establish a near-complete multilocus species-level phylogeny (ca. 87% complete at species level). This results in a phylogeny that supports the monophyly of all genera (if Brachyophidium is considered a junior synonym of Teretrurus), and provides a firm platform for future taxonomic revision. Sri Lankan uropeltids are probably monophyletic, indicating a single colonisation event of this island from Indian ancestors. However, the position of Rhinophis goweri (endemic to Eastern Ghats, southern India) is unclear and warrants further investigation, and evidence that it may nest within the Sri Lankan radiation indicates a possible recolonisation event. DNA sequence data and morphology suggest that currently recognised uropeltid species diversity is substantially underestimated. Our study highlights the benefits of integrating museum collections in molecular genetic analyses and their role in understanding the systematics and evolutionary history of understudied organismal groups.


Assuntos
Museus , Serpentes , Animais , Filogenia , Serpentes/genética , Sequência de Bases , Sri Lanka
3.
Nat Commun ; 12(1): 5717, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588433

RESUMO

The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.


Assuntos
Distribuição Animal , Biodiversidade , Borboletas/fisiologia , Clima Tropical , Animais , Extinção Biológica , Genes de Insetos , Especiação Genética , Geografia , Filogenia , Análise Espaço-Temporal
4.
J Anim Ecol ; 90(12): 2819-2833, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453852

RESUMO

Human population expansion into wildlife habitats has increased interest in the behavioural ecology of human-wildlife interactions. To date, however, the socioecological factors that determine whether, when or where wild animals take risks by interacting with humans and anthropogenic factors still remains unclear. We adopt a comparative approach to address this gap, using social network analysis (SNA). SNA, increasingly implemented to determine human impact on wildlife ecology, can be a powerful tool to understand how animal socioecology influences the spatiotemporal distribution of human-wildlife interactions. For 10 groups of rhesus, long-tailed and bonnet macaques (Macaca spp.) living in anthropogenically impacted environments in Asia, we collected data on human-macaque interactions, animal demographics, and macaque-macaque agonistic and affiliative social interactions. We constructed 'human co-interaction networks' based on associations between macaques that interacted with humans within the same time and spatial locations, and social networks based on macaque-macaque allogrooming behaviour, affiliative behaviours of short duration (agonistic support, lip-smacking, silent bare-teeth displays and non-sexual mounting) and proximity. Pre-network permutation tests revealed that, within all macaque groups, specific individuals jointly took risks by repeatedly, consistently co-interacting with humans within and across time and space. GLMMs revealed that macaques' tendencies to co-interact with humans was positively predicted by their tendencies to engage in short-duration affiliative interactions and tolerance of conspecifics, although the latter varied across species (bonnets>rhesus>long-tailed). Male macaques were more likely to co-interact with humans than females. Neither macaques' grooming relationships nor their dominance ranks predicted their tendencies to co-interact with humans. Our findings suggest that, in challenging anthropogenic environments, less (compared to more) time-consuming forms of affiliation, and additionally greater social tolerance in less ecologically flexible species with a shorter history of exposure to humans, may be key to animals' joint propensities to take risks to gain access to resources. For males, greater exploratory tendencies and less energetically demanding long-term life-history strategies (compared to females) may also influence such joint risk-taking. From conservation and public health perspectives, wildlife connectedness within such co-interaction networks may inform interventions to mitigate zoonosis, and move human-wildlife interactions from conflict towards coexistence.


Assuntos
Animais Selvagens , Efeitos Antropogênicos , Animais , Feminino , Asseio Animal , Humanos , Masculino , Comportamento Social , Análise de Rede Social
5.
J Evol Biol ; 34(9): 1362-1375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173293

RESUMO

Phenotypic plasticity in heterogeneous environments can provide tight environment-phenotype matching. However, the prerequisite is a reliable environmental cue(s) that enables organisms to use current environmental information to induce the development of a phenotype with high fitness in a forthcoming environment. Here, we quantify predictability in the timing of precipitation and temperature change to examine how this is associated with seasonal polyphenism in tropical Mycalesina butterflies. Seasonal precipitation in the tropics typically results in distinct selective environments, the wet and dry seasons, and changes in temperature can be a major environmental cue. We sampled communities of Mycalesina butterflies from two seasonal locations and one aseasonal location. Quantifying environmental predictability using wavelet analysis and Colwell's indices confirmed a strong periodicity of precipitation over a 12-month period at both seasonal locations compared to the aseasonal one. However, temperature seasonality and periodicity differed between the two seasonal locations. We further show that: (a) most females from both seasonal locations synchronize their reproduction with the seasons by breeding in the wet season but arresting reproduction in the dry season. In contrast, all species breed throughout the year in the aseasonal location and (b) species from the seasonal locations, but not those from the aseasonal location, exhibited polyphenism in wing pattern traits (eyespot size). We conclude that seasonal precipitation and its predictability are primary factors shaping the evolution of polyphenism in Mycalesina butterflies, and populations or species secondarily evolve local adaptations for cue use that depend on the local variation in the environment.


Assuntos
Borboletas , Adaptação Fisiológica , Animais , Borboletas/genética , Feminino , Fenótipo , Estações do Ano , Clima Tropical , Asas de Animais
6.
PLoS One ; 16(6): e0253038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34181672

RESUMO

When the habitat occupied by a specialist species is patchily distributed, limited gene flow between the fragmented populations may allow population differentiation and eventual speciation. 'Sky islands'-montane habitats that form terrestrial islands-have been shown to promote diversification in many taxa through this mechanism. We investigate floral variation in Impatiens lawii, a plant specialized on laterite rich rocky plateaus that form sky islands in the northern Western Ghats mountains of India. We focus on three plateaus separated from each other by ca. 7 to 17 km, and show that floral traits have diverged strongly between these populations. In contrast, floral traits have not diverged in the congeneric I. oppositifolia, which co-occurs with I. lawii in the plateaus, but is a habitat generalist that is also found in the intervening valleys. We conducted common garden experiments to test whether the differences in I. lawii are due to genetic differentiation or phenotypic plasticity. There were strong differences in floral morphology between experimental plants sourced from the three populations, and the relative divergences between population pairs mirrored that seen in the wild, indicating that the populations are genetically differentiated. Common garden experiments confirmed that there was no differentiation in I. oppositifolia. Field floral visitation surveys indicated that the observed differences in floral traits have consequences for I. lawii populations, by reducing the number of visitors and changing the relative abundance of different floral visitor groups. Our results highlight the role of habitat specialization in diversification, and corroborates the importance of sky islands as centres of diversification.


Assuntos
Biodiversidade , Ecossistema , Flores/classificação , Fluxo Gênico , Especiação Genética , Fenótipo , Plantas/classificação , Flores/genética , Flores/crescimento & desenvolvimento , Plantas/genética
7.
Am J Bot ; 108(4): 628-646, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33745129

RESUMO

PREMISE: The woody plant group Memecylon (Melastomataceae) is a large clade occupying diverse forest habitats in the Old World tropics and exhibiting high regional endemism. Its phylogenetic relationships have been previously studied using ribosomal DNA with extensive sampling from Africa and Madagascar. However, divergence times, biogeography, and character evolution of Memecylon remain uninvestigated. We present a phylogenomic analysis of Memecylon to provide a broad evolutionary perspective of this clade. METHODS: One hundred supercontigs of 67 Memecylon taxa were harvested from target enrichment. The data were subjected to coalescent and concatenated phylogenetic analyses. A timeline was provided for Memecylon evolution using fossils and secondary calibration. The calibrated Memecylon phylogeny was used to elucidate its biogeography and ancestral character states. RESULTS: Relationships recovered by the phylogenomic analyses are strongly supported in both maximum likelihood and coalescent-based species trees. Memecylon is inferred to have originated in Africa in the Eocene and subsequently dispersed predominantly eastward via long-distance dispersal (LDD), although a reverse dispersal from South Asia westward to the Seychelles was postulated. Morphological data exhibited high levels of homoplasy, but also showed that several vegetative and reproductive characters were phylogenetically informative. CONCLUSIONS: The current distribution of Memecylon appears to be the result of multiple ancestral LDD events. Our results demonstrate the importance of the combined effect of geographic and paleoclimatic factors in shaping the distribution of this group in the Old World tropics. Memecylon includes a number of evolutionarily derived morphological features that contribute to diversity within the clade.


Assuntos
Melastomataceae , África , Ásia , Teorema de Bayes , Evolução Molecular , Madagáscar , Filogenia , Filogeografia
8.
Sci Rep ; 10(1): 21991, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319843

RESUMO

Despite increasing conflict at human-wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human-wildlife interactions. Adopting a comparative approach, we examined the impact of animals' life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human-interaction data for 11-20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better inform efforts to minimize conflict-related costs and zoonotic-risk.


Assuntos
Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Macaca fascicularis/fisiologia , Macaca mulatta/fisiologia , Macaca radiata/fisiologia , Fatores Sociais , Agressão , Animais , Feminino , Humanos , Modelos Lineares , Masculino , Rede Social
9.
J Exp Biol ; 223(Pt 13)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32414875

RESUMO

Innate colour preferences in insects were long considered to be a non-flexible representation of a floral 'search image' guiding them to flowers during initial foraging trips. However, these colour preferences have recently been shown to be modulated by multi-sensory integration of information. Using experiments on the butterfly Catopsilia pomona (common emigrant), we demonstrate that cross-modal integration of information not only affects colour preferences but also colour learning, and in a sex-specific manner. We show that spontaneous colour preference in this species is sexually dimorphic, with males preferring both blue and yellow while females prefer yellow. With minimal training (two training sessions), both males and females learned to associate blue with reward, but females did not learn green. This suggests that the aversion to green, in the context of foraging, is stronger in females than in males, probably because green is used as a cue to find oviposition sites in butterflies. However, females learned green after extensive training (five training sessions). Intriguingly, when a floral odour was present along with green during training, female colour preference during the subsequent choice tests resembled their innate preference (preference for yellow). Our results show that multi-sensory integration of information can influence preference, sensory bias, learning and memory in butterflies, thus modulating their behaviour in a context-specific manner.


Assuntos
Borboletas , Animais , Cor , Feminino , Flores , Aprendizagem , Masculino , Odorantes
10.
Am J Phys Anthropol ; 171(4): 704-717, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32064585

RESUMO

OBJECTIVES: In primates, allogrooming and other affiliative behaviors confer many benefits and may be influenced by many socioecological factors. Of these, the impact of anthropogenic factors remain relatively understudied. Here we ask whether interactions with humans decreased macaques' affiliative behaviors by imposing time-constraints, or increased these behaviors on account of more free-/available-time due to macaques' consumption of high-energy human foods. MATERIALS AND METHODS: In Southern India, we collected data on human-macaque and macaque-macaque interactions using focal-animal sampling on two groups of semi-urban bonnet macaques for 11 months. For each macaque within each climatic season, we calculated frequencies of human-macaque interactions, rates of monitoring human activity and foraging on anthropogenic food, dominance ranks, grooming duration, number of unique grooming partners, and frequencies of other affiliative interactions. RESULTS: We found strong evidence for time-constraints on grooming. Macaques that monitored humans more groomed for shorter durations and groomed fewer partners, independent of their group membership, sex, dominance rank, and season. However, monitoring humans had no impact on other affiliative interactions. We found no evidence for the free-time hypothesis: foraging on anthropogenic food was unrelated to grooming and other affiliation. DISCUSSION: Our results are consistent with recent findings on other urban-dwelling species/populations. Macaques in such environments may be especially reliant on other forms of affiliation that are of short duration (e.g., coalitionary support, lip-smacking) and unaffected by time-constraints. We stress on the importance of evaluating human impact on inter-individual differences in primate/wildlife behavior for conservation efforts.


Assuntos
Asseio Animal , Atividades Humanas , Macaca radiata/fisiologia , Comportamento Social , Adulto , Animais , Feminino , Humanos , Índia , Masculino
11.
Primates ; 61(2): 249-255, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31773350

RESUMO

In primates, living in an anthropogenic environment can significantly improve an individual's fitness, which is likely attributed to access to anthropogenic food resources. However, in non-professionally provisioned groups, few studies have examined whether individual attributes, such as dominance rank and sex, affect primates' ability to access anthropogenic food. Here, we investigated whether rank and sex explain individual differences in the proportion of anthropogenic food consumed by macaques. We observed 319 individuals living in nine urban groups across three macaque species. We used proportion of anthropogenic food in the diet as a proxy of access to those food resources. Males and high-ranking individuals in both sexes had significantly higher proportions of anthropogenic food in their diets than other individuals. We speculate that unequal access to anthropogenic food resources further increases within-group competition, and may limit fitness benefits in an anthropogenic environment to certain individuals.


Assuntos
Comportamento Competitivo , Dieta/veterinária , Macaca/fisiologia , Predomínio Social , Animais , Cidades , Comportamento Alimentar , Feminino , Atividades Humanas , Índia , Malásia , Masculino , Fatores Sexuais
12.
J Anim Ecol ; 89(3): 716-729, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693172

RESUMO

Evading predators is a fundamental aspect of the ecology and evolution of all prey animals. In studying the influence of prey traits on predation risk, previous researchers have shown that crypsis reduces attack rates on resting prey, predation risk increases with increased prey activity, and rapid locomotion reduces attack rates and increases chances of surviving predator attacks. However, evidence for these conclusions is nearly always based on observations of selected species under artificial conditions. In nature, it remains unclear how defensive traits such as crypsis, activity levels and speed influence realized predation risk across species in a community. Whereas direct observations of predator-prey interactions in nature are rare, insight can be gained by quantifying bodily damage caused by failed predator attacks. We quantified how butterfly species traits affect predation risk in nature by determining how defensive traits correlate with wing damage caused by failed predation attempts, thereby providing the first robust multi-species comparative analysis of predator-induced bodily damage in wild animals. For 34 species of fruit-feeding butterflies in an African forest, we recorded wing damage and quantified crypsis, activity levels and flight speed. We then tested for correlations between damage parameters and species traits using comparative methods that account for measurement error. We detected considerable differences in the extent, location and symmetry of wing surface loss among species, with smaller differences between sexes. We found that males (but not females) of species that flew faster had substantially less wing surface loss. However, we found no correlation between cryptic coloration and symmetrical wing surface loss across species. In species in which males appeared to be more active than females, males had a lower proportion of symmetrical wing surface loss than females. Our results provide evidence that activity greatly influences the probability of attacks and that flying rapidly is effective for escaping pursuing predators in the wild, but we did not find evidence that cryptic species are less likely to be attacked while at rest.


Assuntos
Borboletas , Animais , Feminino , Locomoção , Masculino , Comportamento Predatório , Asas de Animais
13.
PeerJ ; 7: e7508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428543

RESUMO

Uropeltid snakes (Family Uropeltidae) are non-venomous, fossorial snakes that are found above ground occasionally, during which time they are exposed to predation. Many species are brightly coloured, mostly on the ventral surface, but these colours are expected to have no function below the ground. Observations have shown that the cephalic resemblance (resemblance to heads) of uropeltid tails may direct attacks of predators towards the hardened tails, thereby potentially increasing handling times for predators. Experiments have also shown that predators learn to avoid prey that are non-toxic and palatable but are difficult to capture, hard to process or require long handling time when such prey advertise their unprofitability through conspicuous colours. We here postulate that uropeltid snakes use their bright colours to signal long handling times associated with attack deflection to the tails, thereby securing reduced predation from predators that can learn to associate colour with handling time. Captive chicken experiments with dough models mimicking uropeltids indicate that attacks were more common on the tail than on the head. Field experiments with uropeltid clay models show that the conspicuous colours of these snakes decrease predation rates compared to cryptic models, but a novel conspicuous colour did not confer such a benefit. Overall, our experiments provide support for our hypothesis that the conspicuous colours of these snakes reduce predation, possibly because these colours advertise unprofitability due to long handling times.

14.
Sci Rep ; 9(1): 274, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670756

RESUMO

The confusion effect - the decreased attack-to-kill ratio of a predator with increase in prey group size - is thought to be one of the main reasons for the evolution of group living in animals. Despite much interest, the influence of prey coloration on the confusion effect is not well understood. We hypothesized that dynamic colour change in motion (due to interference coloration or flash marks), seen widely in many group living animals, enhances the confusion effect. Utilizing a virtual tracking task with humans, we found targets that dynamically changed colour during motion were more difficult to track than targets with background matching patterns, and this effect was stronger at larger group sizes. The current study thus provides the first empirical evidence for the idea that dynamic colour change can benefit animals in a group and may explain the widespread occurrence of dynamic colorations in group-living animals.


Assuntos
Cor , Modelos Biológicos , Comportamento Predatório , Animais , Confusão/etiologia , Movimento (Física) , Densidade Demográfica
15.
PeerJ ; 6: e5495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155369

RESUMO

The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.

16.
J Evol Biol ; 31(11): 1675-1688, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102810

RESUMO

Understanding the functions of animal coloration has been a long-standing question in evolutionary biology. For example, the widespread occurrence of striking longitudinal stripes and colourful tails in lizards begs for an explanation. Experiments have suggested that colourful tails can deflect attacks towards the tail (the 'deflection' hypothesis), which is sacrificable in most lizards, thereby increasing the chance of escape. Studies also suggest that in moving lizards, longitudinal body stripes can redirect predators' strikes towards the tail through the 'motion dazzle' effect. Despite these experimental studies, the ecological factors associated with the evolution of such striking colorations remain unexplored. Here, we investigated whether predictions from motion dazzle and attack deflection could explain the widespread occurrence of these striking marks using comparative methods and information on eco-physiological variables (caudal autotomy, diel activity, microhabitat and body temperature) potentially linked to their functioning. We found both longitudinal stripes and colourful tails are associated with diurnal activity and with the ability to lose the tail. Compared to stripeless species, striped species are more likely to be ground-dwelling and have higher body temperature, emphasizing the connection of stripes to mobility and rapid escape strategy. Colourful tails and stripes have evolved multiple times in a correlated fashion, suggesting that their functions may be linked. Overall, our results together with previous experimental studies support the notion that stripes and colourful tails in lizards may have protective functions based on deflective and motion dazzle effects.


Assuntos
Evolução Biológica , Lagartos/genética , Lagartos/fisiologia , Pigmentação/fisiologia , Cauda , Animais , Comportamento Animal , Ritmo Circadiano , Ecossistema , Especiação Genética
17.
Mol Phylogenet Evol ; 123: 50-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29428509

RESUMO

Hypolimnas butterflies (Nymphalidae), commonly known as eggflies, are a popular model system for studying a wide range of ecological questions including mimicry, polymorphism, wing pattern evolution, and Wolbachia-host interactions. The lack of a time-calibrated phylogeny for this group has precluded understanding its evolutionary history. We reconstruct a species-level phylogeny using a nine gene dataset and estimate species divergence times. Based on the resulting tree, we investigate the taxon's historical biogeography, examine the evolution of host plant preferences, and test the hypothesis that the endosymbiotic bacterium Wolbachia mediates gene transfer between species. Our analyses indicate that the species are grouped within three strongly supported, deeply divergent clades. However, relationships among these three clades are uncertain. In addition, many Hypolimnas species are not monophyletic or monophyletic with weak support, suggesting widespread incomplete lineage sorting and/or introgression. Biogeographic analysis strongly indicates that the genus diverged from its ancestor in Africa and subsequently dispersed to Asia; the strength of this result is not affected by topological uncertainties. While the larvae of African species feed almost exclusively on Urticaceae, larvae of species found further east often feed on several additional families. Interestingly, we found an identical mitochondrial haplotype in two Hypolimnas species, H. bolina and H. alimena, and a strong association between this mitotype and the Wolbachia strain wBol1a. Future investigations should explore the plausibility of Wolbachia-mediated introgression between species.


Assuntos
Evolução Biológica , Borboletas/genética , Borboletas/microbiologia , Wolbachia/fisiologia , África , Animais , Sequência de Bases , Teorema de Bayes , Biodiversidade , DNA Mitocondrial/genética , Haplótipos/genética , Larva/fisiologia , Funções Verossimilhança , Mitocôndrias/genética , Filogenia , Filogeografia , Análise de Sequência de DNA
18.
Mol Phylogenet Evol ; 116: 97-107, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28867076

RESUMO

Understanding how and why diversification rates vary across evolutionary time is central to understanding how biodiversity is generated and maintained. Recent mathematical models that allow estimation of diversification rates across time from reconstructed phylogenies have enabled us to make inferences on how biodiversity copes with environmental change. Here, we explore patterns of temporal diversification in Uropeltidae, a diverse fossorial snake family. We generate a time-calibrated phylogenetic hypothesis for Uropeltidae and show a significant correlation between diversification rate and paleotemperature during the Cenozoic. We show that the temporal diversification pattern of this group is punctuated by one rate shift event with a decrease in diversification and turnover rate between ca. 11Ma to present, but there is no strong support for mass extinction events. The analysis indicates higher turnover during periods of drastic climatic fluctuations and reduced diversification rates associated with contraction and fragmentation of forest habitats during the late Miocene. Our study highlights the influence of environmental fluctuations on diversification rates in fossorial taxa such as uropeltids, and raises conservation concerns related to present rate of climate change.


Assuntos
Serpentes/classificação , Animais , Evolução Biológica , Mudança Climática , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Ecossistema , Extinção Biológica , Filogenia , Análise de Sequência de DNA , Serpentes/genética
19.
BMC Evol Biol ; 17(1): 174, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768477

RESUMO

BACKGROUND: Skippers (Family: Hesperiidae) are a large group of butterflies with ca. 4000 species under 567 genera. The lack of a time-calibrated higher-level phylogeny of the group has precluded understanding of its evolutionary past. We here use a 10-gene dataset to reconstruct the most comprehensive time-calibrated phylogeny of the group, and explore factors that affected the diversification of these butterflies. RESULTS: Ancestral state reconstructions show that the early hesperiid lineages utilized dicots as larval hostplants. The ability to feed on monocots evolved once at the K-Pg boundary (ca. 65 million years ago (Mya)), and allowed monocot-feeders to diversify much faster on average than dicot-feeders. The increased diversification rate of the monocot-feeding clade is specifically attributed to rate shifts in two of its descendant lineages. The first rate shift, a four-fold increase compared to background rates, happened ca. 50 Mya, soon after the Paleocene-Eocene thermal maximum, in a lineage of the subfamily Hesperiinae that mostly fed on forest monocots. The second rate shift happened ca. 40 Mya in a grass-feeding lineage of Hesperiinae when open-habitat grasslands appeared in the Neotropics owing to gradual cooling of the atmospheric temperature. CONCLUSIONS: The evolution of monocot feeding strongly influenced diversification of skippers. We hypothesize that although monocot feeding was an intrinsic trait that allowed exploration of novel niches, the lack of extensive availability of monocots comprised an extrinsic limitation for niche exploration. The shifts in diversification rate coincided with paleoclimatic events during which grasses and forest monocots were diversified.


Assuntos
Biodiversidade , Borboletas/classificação , Clima , Interações Hospedeiro-Parasita , Paleontologia , Animais , Ecossistema , Filogenia , Filogeografia , Poaceae/parasitologia
20.
BMC Evol Biol ; 17(1): 59, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241743

RESUMO

BACKGROUND: Developmental plasticity is thought to have profound macro-evolutionary effects, for example, by increasing the probability of establishment in new environments and subsequent divergence into independently evolving lineages. In contrast to plasticity optimized for individual traits, phenotypic integration, which enables a concerted response of plastic traits to environmental variability, may affect the rate of local adaptation by constraining independent responses of traits to selection. Using a comparative framework, this study explores the evolution of reaction norms for a variety of life history and morphological traits across five related species of mycalesine butterflies from the Old World tropics. RESULTS: Our data indicate that an integrated response of a suite of key traits is shared amongst these species. Interestingly, the traits that make up the functional suite are all known to be regulated by ecdysteroid signalling in Bicyclus anynana, one of the species included in this study, suggesting the same underlying hormonal regulator may be conserved within this group of polyphenic butterflies. We also detect developmental thresholds for the expression of alternative morphs. CONCLUSIONS: The phenotypic plasticity of a broad suite of morphological and life history traits is integrated and shared among species from three geographically independent lineages of mycalesine butterflies, despite considerable periods of independent evolution and exposure to disparate environments. At the same time, we have detected examples of evolutionary change where independent traits show different patterns of reaction norms. We argue that the expression of more robust phenotypes may occur by shifting developmental thresholds beyond the boundaries of the typical environmental variation.


Assuntos
Borboletas/anatomia & histologia , Borboletas/crescimento & desenvolvimento , Asas de Animais/anatomia & histologia , Adaptação Fisiológica , Animais , Evolução Biológica , Tamanho Corporal , Borboletas/química , Borboletas/genética , Meio Ambiente , Feminino , Estágios do Ciclo de Vida , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...