Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(35): 19560-19572, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936153

RESUMO

This study focuses on the physico-geometrical constraints of the kinetics of the thermal decomposition of solids as exemplified by the thermal dehydration of α-oxalic acid dihydrate and the subsequent thermally induced sublimation/decomposition of the as-produced anhydride using the samples of crystalline particles (CPs) and a single crystal (SC) form. The CP and SC samples possess approximately similar geometrical figures with different sizes. The shapes of the original dihydrate and the as-produced anhydride from thermal dehydration are practically congruent. Therefore, proper evaluations of the current kinetic understanding of contracting geometry-type reactions were expected by the comparisons of the kinetic behaviors among different sample forms and thermally induced processes. The kinetic analysis of the thermal dehydration process revealed that the consecutive physico-geometrical processes comprised of an induction period, a surface reaction, and a phase boundary-controlled reaction, where distinguishable differences in the rate behavior were observed between the CP and SC samples for the surface reaction. On the other hand, the thermally induced sublimation/decomposition of the anhydride was described as an ideal single-step geometry contraction process, for which the CP and SC samples exhibited the same rate variation behavior under isothermal conditions. However, the sublimation/decomposition processes of the CP and SC samples were characterized by the different Arrhenius parameters, in which the compensative changes in the apparent activation energy and preexponential factor were apparent. Implications for the kinetic modeling of the solid-state reactions and the interpretation of kinetic results were obtained from the results of the comparative kinetic study for different sample forms and thermally induced processes.

2.
Phys Chem Chem Phys ; 22(24): 13637-13649, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519687

RESUMO

This study aims to establish an advanced kinetic theory for reactions in solid state and solid-gas systems, achieving a universal kinetic description over a range of temperature and partial pressure of reactant or product gases. The thermal decomposition of Mg(OH)2 to MgO was selected as a model reaction system, and the effect of water vapor pressure p(H2O) on the kinetics was investigated via humidity controlled thermogravimetry. The reaction rate of the thermal decomposition process at a constant temperature was systematically decreased by increasing the p(H2O) value, accompanied by an increase in the sigmoidal feature of mass-loss curves. Under nonisothermal conditions at a given heating rate, mass-loss curves shifted systematically to higher temperatures depending on the p(H2O) value. The kinetic behavior under different temperature and p(H2O) conditions was universally analyzed by introducing an accommodation function (AF) of the form (P°/p(H2O))a[1 - (p(H2O)/Peq(T))b], where P° and Peq(T) are the standard and equilibrium pressures, respectively, into the fundamental kinetic equation. Two kinetic approaches were examined based on the isoconversional kinetic relationship and a physico-geometrical consecutive reaction model. In both the kinetic approaches, universal kinetic descriptions are achieved using the modified kinetic equation with the AF. The kinetic features of thermal decomposition are revealed by correlating the results from the two universal kinetic approaches. Furthermore, advanced features for the kinetic understanding of thermal decomposition of solids revealed by the universal kinetic descriptions are discussed by comparing the present kinetic results with those reported previously for the thermal decomposition of Ca(OH)2 and Cu(OH)2.

3.
Phys Chem Chem Phys ; 21(22): 11615-11632, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31114819

RESUMO

Thermal decomposition of Ca(OH)2 under atmospheric water vapor exhibits special features, including an induction period (IP) and a subsequent sigmoidal mass-loss behavior under isothermal conditions. Atmospheric water vapor reduces the reaction rate at a specific temperature and causes a systematic shift of the mass-loss curve, which was recorded at a specific heating rate, to higher temperatures as the water vapor pressure, p(H2O), increases. The challenge in this study was to universally describe the kinetics of thermal decomposition under various p(H2O) conditions by introducing an accommodation function in the fundamental kinetic equation. The accommodation function in the multiplied form of two p(H2O) components with a variable exponent in each component was derived on the basis of the classical nucleation and interface reaction theories. The universal kinetic approach was realized by applying the accommodation function to formal kinetic analyses of the Arrhenius plot for the IP and the Friedman plot for the mass-loss process. Furthermore, the overall reaction process under isothermal conditions was analyzed kinetically on the basis of the physico-geometrical consecutive reaction model, which was composed of an IP, a surface reaction (SR), and a phase boundary-controlled reaction (PBR). Subsequently, the kinetic parameters for each physico-geometrical reaction step were determined by the modified Arrhenius plot with the accommodation function. The impact of the atmospheric water vapor on the kinetics of thermal decomposition was characterized in connection with physico-geometrical reaction mechanisms through the interpretation of the kinetic parameters and these variation behavior patterns as the overall reaction advanced.

4.
Phys Chem Chem Phys ; 20(41): 26173-26189, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30311610

RESUMO

Thermally induced carbonation of Ca(OH)2 in a CO2 atmosphere is a reaction exhibiting particular features, including stoichiometric completeness to form CaCO3 and a kinetic advantage over the carbonation of CaO particles. This study aims to gain further insight into the reaction mechanisms of CO2 capture by Ca(OH)2 and CaO. It focuses on the kinetic modeling of the carbonation of Ca(OH)2 as a consecutive reaction in a solid-gas system. The kinetic behaviors of the thermal decomposition of Ca(OH)2 in an inert gas atmosphere and of the overall process of thermally induced carbonation of Ca(OH)2 in a CO2 atmosphere were investigated using thermal analyses and other complementary techniques. Based on kinetic results, the overall reaction of the thermally induced carbonation of Ca(OH)2 in a CO2 atmosphere was separated by a kinetic deconvolution analysis into two consecutive reaction steps: the thermal decomposition of Ca(OH)2 and the subsequent carbonation of the CaO intermediate. The relationship between the two component reaction processes was well illustrated by a consecutive shrinkage of the dual reaction interfaces of Ca(OH)2-CaO and CaO-CaCO3. The continuous supply of water vapor and CO2 to the CaO-CaCO3 interface from different directions was suggested to be the physico-geometrical advantageous feature of the carbonation of Ca(OH)2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...