Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(9): 094501, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182476

RESUMO

We report on the concept, design, and tests of a New Picosecond Event Timer (NPET) device and its response to the total ionizing dose. These radiation tests aimed to verify that the existing version of the NPET device may be used in space missions. The device was subjected to radiation of a total dose of 74 Gy provided by a 60Co source. The epoch timing part of the device was not detectably affected by the radiation dose. After the radiation dose, the epoch timing of single measurement resolution is better than 0.9 ps with the overall timing stability characterized by Time Deviation being better than 5 fs for averaging times of 100 s. The completed device tests and results indicate the possibility of using the existing version of the New Pico Event Timing device electronics for a space mission in which the total radiation dose will not exceed 74 Gy value.


Assuntos
Radiação Cósmica , Proteção Radiológica , Voo Espacial , Doses de Radiação , Proteção Radiológica/métodos
2.
Phys Rev Lett ; 125(3): 033605, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745436

RESUMO

Absolute rotation rate sensing with extreme sensitivity requires a combination of several large scale gyroscopes in order to obtain the full vector of rotation. We report on the construction and operation of a four-component, tetrahedral laser gyroscope array as large as a five story building and situated in a near surface, underground laboratory. It is demonstrated that reconstruction of the full Earth rotation vector can be achieved with sub-arcsecond resolution over more than six weeks.

3.
Rev Sci Instrum ; 91(5): 056102, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486735

RESUMO

Satellite Laser Ranging (SLR) is a well established space geodetic technique measuring the satellite distance, which implements time of flight. Up to now, second harmonic Nd:YAG laser pulses have been frequently used for range measurement, since the silicon detector technology allows us to detect single photon echoes reflected from satellites with required high detection probability, millimeter precision, and an acceptable dark count rate. On the other hand, the fundamental wavelength (1064 nm) provides a significantly better overall energy budget, but there were no suitable detectors available. More recently, the use of InGaAs/InP became feasible for developing single photon avalanche diodes, which exhibit high photon detection probability and acceptable timing resolution. Both these properties are important and allow the SLR measurement at the fundamental wavelength. In this Note, we report on construction and testing of a single photon detector package based on the InGaAs/InP diode optimized for the SLR measurement.

4.
Rev Sci Instrum ; 89(5): 056106, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864835

RESUMO

The solid state photon counting detector is one of the key components of a measurement chain for laser time transfer ground to space. The photon counting approach significantly reduces systematic errors of the time transfer. The requirements put on the detection precision and the stability of laser time transfer are increasing and reaching sub-picosecond levels now. The temperature variations in the space environment limit the long term detection delay stability of detectors. Therefore, we have modified the existing space qualified solid state photon counter control circuit which compensates to a high degree the temperature variations of detection delay. We have optimized the detection delay change with operating temperature and reached the lowest temperature coefficient as low as 20 fs/K in a temperature range of +22 to +46 °C. The timing resolution and photon detection probability remained unchanged at the values of 40 ps FWHM and 30%, respectively. Thanks to the low temperature drift of the detector, the limiting precision of the laser time transfer chain characterized by time deviation is lower than 40 fs for 2000 s averaging time. These detection delay stability parameters are, to our knowledge, the best ever reported for any photon counting detector. This modification of the detector control circuit did not affect the space qualification of the device, which is expected to be used in future laser time transfer space missions.

5.
Rev Sci Instrum ; 88(10): 106105, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092507

RESUMO

We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 µm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

6.
Rev Sci Instrum ; 87(5): 056102, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250477

RESUMO

The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

7.
Rev Sci Instrum ; 85(12): 126110, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554346

RESUMO

We are reporting on the design, performance, and application results of a phase and frequency comparator based on the direct phase-time measurement using a high performance event timer. The advantages of this approach are the simple implementation, a broad frequency range, and the clear interpretation of the measured results. Primarily we analyzed the background instability of the instrument in a common-clock test when a 200 MHz clock signal was connected to both inputs and the noise bandwidth was kept at 5 Hz by a preprocessing of the measured data. The results show that the Allan deviation of the background instability follows 4 × 10(-14)/τ for a wide range of averaging intervals from 0.1 s up to 10(4) s. These results are better than background instability of commercially available state-of-the-art instruments based on the phase difference multiplication. Finally the instrument was used for comparison of two H-masers. This experiment proofed that one of possible applications is a comparison of low-noise highly stable frequency sources and measurement of their frequency stability in the time-domain. The noise background of the instrument was negligible for averaging intervals longer than 100 ms.

8.
Rev Sci Instrum ; 84(4): 046107, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635241

RESUMO

We are reporting on a design, construction, and performance of photon counting detector packages based on solid state sensors. These photon counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for applications in fundamental metrology and optical time transfer. The single photon avalanche diode structure manufactured on silicon using the K14 technology is used as a sensor. The active area of the sensor is circular with a diameter of 100 or 200 µm. The sensor is operated in an active quenching and gating mode. The photon detection efficiency exceeds 40% in a wavelength range spanning from 500 to 800 nm. The timing resolution is better than 20 ps rms. Its detection delay is stable within ±600 fs over several days of operation, in a sense of time deviation the detection delay stability of 150 fs has been achieved. The temperature change of the detection delay is as low as 280 fs∕K. This timing performance is preserved even under extremely high background photon fluxes exceeding 100 Mc/s. The detectors have been qualified for operation in space missions.

9.
Rev Sci Instrum ; 83(11): 116104, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206111

RESUMO

We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

10.
Rev Sci Instrum ; 83(3): 036101, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462967

RESUMO

We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...