Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(7): 12480-12488, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460367

RESUMO

Roll-to-roll hot embossing could revolutionize the manufacturing of multifunctional polymer films with the ability to process large area at a high rate with reduced cost. The continuous hot embossing of the films, however, has been hindered due to the lack of durable and flexible molds, which can replicate micro and nanofeatures with reliability over several embossing cycles. In this work, we demonstrate for the first time the fabrication of a flexible polymer (polyimide) mold from the commercially available sheet by a maskless photolithography approach combined with inductively coupled plasma etching and its potential application to the roll-to-roll hot embossing process. The flexible polyimide mold consisted of holes with controlled dimensions: diameter: 14 µm, spacing: 16.5 µm, and depth: 6.8 µm. The reliability of flexible polyimide mold was tested and implemented by embossing micron-sized features on a commercial thermoplastic polymer, polyamide, and thermoplastic elastomer (TPE) sheet. The polyimide mold replicated micron-sized features on polymer substrates (polyamide and TPE) with excellent fidelity and was durable even after numerous embossing cycles.

2.
Polymers (Basel) ; 11(2)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30960331

RESUMO

Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young's modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...