Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(30): 19431-19444, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865562

RESUMO

This paper describes the synthesis of enamino carbonyl compounds by the copper(i)-catalyzed coupling of acceptor-substituted diazo compounds and tertiary thioamides. We plan to use this method to synthesize indolizidine (-)-237D analogs to find α6-selective antismoking agents. Therefore, we also performed in silico α6-nAchRs binding studies of selected products. Compounds with low root-mean-square deviation values showed more favorable binding free energies. We also report preliminary pharmacokinetic data on indolizidine (-)-237D and found it to have weak activity at CYP3A4. In addition, as enamino carbonyl compounds are also known for antimicrobial properties, we screened previously reported and new enamino carbonyl compounds for antibacterial, antimicrobial, and antifungal properties. Eleven compounds showed significant antimicrobial activities.

2.
Nanomaterials (Basel) ; 11(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066661

RESUMO

The development of armour systems with higher ballistic resistance and light weight has gained considerable attention as an increasing number of countries are recognising the need to build up advanced self-defence system to deter potential military conflicts and threats. Graphene is a two dimensional one-atom thick nanomaterial which possesses excellent tensile strength (130 GPa) and specific penetration energy (10 times higher than steel). It is also lightweight, tough and stiff and is expected to replace the current aramid fibre-based polymer composites. Currently, insights derived from the study of the nacre (natural armour system) are finding applications on the development of artificial nacre structures using graphene-based materials that can achieve high toughness and energy dissipation. The aim of this review is to discuss the potential of graphene-based nanomaterials with regard to the penetration energy, toughness and ballistic limit for personal body armour applications. This review addresses the cutting-edge research in the ballistic performance of graphene-based materials through theoretical, experimentation as well as simulations. The influence of fabrication techniques and interfacial interactions of graphene-based bioinspired polymer composites for ballistic application are also discussed. This review also covers the artificial nacre which is shown to exhibit superior mechanical and toughness behaviours.

3.
Chem Biol Drug Des ; 86(3): 322-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25494709

RESUMO

A library of structurally distinct enaminones was synthesized using sonication or Ru(II) catalysis to couple primary, secondary, and tertiary thioamides with α-halocarbonyls or α-diazocarbonyls. Screening the library for proteasome inhibition using a luciferase-based assay identified seven structurally diverse compounds. Two of these molecules targeted luciferase, while the remaining five exhibited varying potency and specificity for the trypsin-like, chymotrypsin-like, or caspase-like protease activities of the proteasome. Physiological relevance was confirmed by showing these molecules inhibited proteasomal degradation of the full-length protein substrate p21cip1 expressed in tissue culture cells. A cell viability analysis revealed that the proteasome inhibitors differentially affected cell survival. Results indicate a subset of enaminones and precursor molecules identified in this study are good candidates for further development into novel proteasome inhibitors with potential therapeutic value.


Assuntos
Peptidomiméticos/química , Peptidomiméticos/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Animais , Quimotripsina/antagonistas & inibidores , Quimotripsina/química , Quimotripsina/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Cetonas/síntese química , Cetonas/química , Cetonas/farmacologia , Camundongos , Células NIH 3T3 , Peptidomiméticos/síntese química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tripsina/química , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/química , Inibidores da Tripsina/farmacologia
4.
J Org Chem ; 79(16): 7405-14, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25058113

RESUMO

Enaminones can be prepared via the Rh2(OAc)4-catalyzed coupling of α-diazocarbonyl compounds with thioamides. However, rhodium is the most expensive and least abundant among the dominant precious metals used for catalysis. Furthermore, a very limited substrate scope is known for the intermolecular rhodium catalyzed coupling reaction. Therefore, there is a need to find a more economical catalyst substitute with a broad substrate scope. In this paper, we describe the use of Ru(II) catalysts for the synthesis of enaminones. The reaction can be performed efficiently with the Grubbs first-generation catalyst or [(Ph)3P]3RuCl2 in a sealed tube. Both catalysts are much less expensive than Rh2(OAc)4. Secondary and tertiary thioamides, when reacted with α-diazodiesters, α-diazoketoesters, α-diazodiketones, and α-diazomonoketones give enaminones. Primary thioamides give thiazole derivatives when reacted with α-diazomonoketones. However, with other diazo compounds, primary thioamides also give enaminones. All enaminones are obtained in good yields and with good diastereoselectivity. Accordingly, the method described in this paper is an efficient and economical alternative to the Rh2(OAc)4-catalyzed coupling process.

5.
Org Lett ; 14(2): 440-3, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22208907

RESUMO

The Grubbs first-generation catalyst has been found to be an effective catalyst for the synthesis of enaminones by coupling thioamides with α-diazodicarbonyl compounds. The reaction is successful in converting primary, secondary, and tertiary thioamides into their corresponding enaminones. The reaction is also suitable for the synthesis of chiral enaminones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...