Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 11(4): 222-31, 2001 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11250150

RESUMO

BACKGROUND: Gbeta proteins have traditionally been thought to complex with Ggamma proteins to function as subunits of G protein heterotrimers. The divergent Gbeta(5) protein, however, can bind either Ggamma proteins or regulator of G protein signaling (RGS) proteins that contain a G gamma-like (GGL) domain. RGS proteins inhibit G protein signaling by acting as Galpha GTPase activators. While Gbeta(5) appears to bind RGS proteins in vivo, its association with Ggamma proteins in vivo has not been clearly demonstrated. It is unclear how Gbeta(5) might influence RGS activity. In C. elegans there are exactly two GGL-containing RGS proteins, EGL-10 and EAT-16, and they inhibit Galpha(o) and Galpha(q) signaling, respectively. RESULTS: We knocked out the gene encoding the C. elegans Gbeta(5) ortholog, GPB-2, to determine its physiological roles in G protein signaling. The gpb-2 mutation reduces the functions of EGL-10 and EAT-16 to levels comparable to those found in egl-10 and eat-16 null mutants. gpb-2 knockout animals are viable, and exhibit no obvious defects beyond those that can be attributed to a reduction of EGL-10 or EAT-16 function. GPB-2 protein is nearly absent in eat-16; egl-10 double mutants, and EGL-10 protein is severely diminished in gpb-2 mutants. CONCLUSIONS: Gbeta(5) functions in vivo complexed with GGL-containing RGS proteins. In the absence of Gbeta(5), these RGS proteins have little or no function. The formation of RGS-Gbeta(5) complexes is required for the expression or stability of both the RGS and Gbeta(5) proteins. Appropriate RGS-Gbeta(5) complexes regulate both Galpha(o) and Galpha(q) proteins in vivo.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiologia , Reguladores de Proteínas de Ligação ao GTP , Subunidades beta da Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP/fisiologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas RGS/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Proteínas de Helminto/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Camundongos , Neurônios/metabolismo , Oviposição , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transgenes
2.
Genes Dev ; 14(16): 2003-14, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10950865

RESUMO

Regulators of G protein signaling (RGS proteins) inhibit heterotrimeric G protein signaling by activating G protein GTPase activity. Many mammalian RGS proteins are expressed in the brain and can act in vitro on the neural G protein G(o), but the biological purpose of this multiplicity of regulators is not clear. We have analyzed all 13 RGS genes in Caenorhabditis elegans and found that three of them influence the aspect of egg-laying behavior controlled by G(o) signaling. A previously studied RGS protein, EGL-10, affects egg laying under all conditions tested. The other two RGS proteins, RGS-1 and RGS-2, act as G(o) GTPase activators in vitro but, unlike EGL-10, they do not strongly affect egg laying when worms are allowed to feed constantly. However, rgs-1; rgs-2 double mutants fail to rapidly induce egg-laying behavior when refed after starvation. Thus EGL-10 sets baseline levels of signaling, while RGS-1 and RGS-2 appear to redundantly alter signaling to cause appropriate behavioral responses to food.


Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , Alimentos , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao GTP/genética , Dados de Sequência Molecular , Mutação , Sistema Nervoso/metabolismo , Fenótipo , Proteínas RGS/genética , Homologia de Sequência de Aminoácidos
3.
Genes Dev ; 13(14): 1780-93, 1999 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10421631

RESUMO

To elucidate the cellular role of the heterotrimeric G protein G(o), we have taken a molecular genetic approach in Caenorhabditis elegans. We screened for suppressors of activated GOA-1 (G(o)alpha) that do not simply decrease its expression and found mutations in only two genes, sag-1 and eat-16. Animals defective in either gene display a hyperactive phenotype similar to that of goa-1 loss-of-function mutants. Double-mutant analysis indicates that both sag-1 and eat-16 act downstream of, or parallel to, G(o)alpha and negatively regulate EGL-30 (G(q)alpha) signaling. eat-16 encodes a regulator of G protein signaling (RGS) most similar to the mammalian RGS7 and RGS9 proteins and can inhibit endogenous mammalian G(q)/G(11) in COS-7 cells. Animals defective in both sag-1 and eat-16 are inviable, but reducing function in egl-30 restores viability, indicating that the lethality of the eat-16; sag-1 double mutant is due to excessive G(q)alpha activity. Analysis of these mutations indicates that the G(o) and G(q) pathways function antagonistically in C. elegans, and that G(o)alpha negatively regulates the G(q) pathway, possibly via EAT-16 or SAG-1. We propose that a major cellular role of G(o) is to antagonize signaling by G(q).


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Reguladores de Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Helminto/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Primers do DNA , Regulação da Expressão Gênica , Genes Supressores , Proteínas de Helminto/genética , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
4.
Curr Opin Cell Biol ; 9(2): 143-7, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9069252

RESUMO

Genetic experiments have recently been used to identify a family of 'regulator of G-protein signaling' (RGS) proteins, which downregulate signaling by heterotrimeric G proteins. The first biochemical studies of RGS proteins have shown that they accelerate the GTPase activities of G-protein alpha subunits, thus driving G proteins into their inactive GDP-bound forms. The physiological significance of the large number of different RGS proteins remains to be explored.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas/metabolismo , Animais , Ativação Enzimática , Humanos , Transdução de Sinais
5.
Cell ; 84(1): 115-25, 1996 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-8548815

RESUMO

The frequencies of certain periodic behaviors of the nematode C. elegans are regulated in a dose-dependent manner by the activity of the gene egl-10. These behaviors are modulated oppositely by the activity of the G protein alpha subunit gene goa-1, suggesting that egl-10 may regulate a G protein signaling pathway in a dose-dependent fashion. egl-10 encodes a protein similar to Sst2p, a negative regulator of G protein signaling in yeast. EGL-10 protein is localized in neural processes, where it may function in neurotransmitter signaling. Two previously known and 13 newly identified mammalian genes have similarity to egl-10 and SST2, and we propose that members of this family regulate many G protein signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Proteínas de Ligação ao GTP/genética , Genes de Helmintos/fisiologia , Proteínas/metabolismo , Proteínas RGS , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada/fisiologia , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/análise , Dosagem de Genes , Mamíferos , Dados de Sequência Molecular , Músculos/química , Músculos/citologia , Músculos/fisiologia , Mutação/genética , Sistema Nervoso/química , Fenômenos Fisiológicos do Sistema Nervoso , Óvulo/fisiologia , Proteínas/genética , Ratos , Serotonina/metabolismo , Transdução de Sinais/genética , Leveduras/genética
6.
Proc Natl Acad Sci U S A ; 89(13): 6167-71, 1992 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-1631105

RESUMO

In Drosophila the steroid hormone ecdysone triggers a genetic regulatory hierarchy in which ecdysone combines with a receptor protein to form a complex that induces the transcription of a small class of "early" genes, which encode transcription factors that regulate other genes. We previously reported that one of the early genes, E75, encodes members of the steroid receptor superfamily. Using an E75 hybridization probe, we have identified two additional Drosophila genes that encode members of this superfamily. One of these is the ecdysone receptor gene, EcR, as previously reported. In this work, we examine the sequence, genomic organization, and developmental expression of the other gene, DHR3, which, like E75, encodes one of a growing number of "orphan" receptors for which ligands have not yet been identified. The structure of the DHR3 protein is strikingly similar to that of the MHR3 protein (e.g., 97% amino acid identity for the DNA binding domains), another orphan receptor encoded by an ecdysone-inducible early gene of another insect, Manduca sexta. The temporal developmental profile for DHR3 expression closely parallels that for the ecdysone titer and for the ecdysone-inducible E75 and E74 Drosophila early genes. The structural similarity to a Manduca early gene and the expression similarities to Drosophila early genes suggest that the DHR3 gene may also belong to the early gene class.


Assuntos
Drosophila melanogaster/genética , Receptores de Esteroides/genética , Fatores Etários , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Genes , Dados de Sequência Molecular , RNA Mensageiro/genética , Mapeamento por Restrição
7.
Cell ; 67(1): 59-77, 1991 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-1913820

RESUMO

The steroid hormone ecdysone triggers coordinate changes in Drosophila tissue development that result in metamorphosis. To advance our understanding of the genetic regulatory hierarchies controlling this tissue response, we have isolated and characterized a gene, EcR, for a new steroid receptor homolog and have shown that it encodes an ecdysone receptor. First, EcR protein binds active ecdysteroids and is antigenically indistinguishable from the ecdysone-binding protein previously observed in extracts of Drosophila cell lines and tissues. Second, EcR protein binds DNA with high specificity at ecdysone response elements. Third, ecdysone-responsive cultured cells express EcR, whereas ecdysone-resistant cells derived from them are deficient in EcR. Expression of EcR in such resistant cells by transfection restores their ability to respond to the hormone. As expected, EcR is nuclear and found in all ecdysone target tissues examined. Furthermore, the EcR gene is expressed at each developmental stage marked by a pulse of ecdysone.


Assuntos
Drosophila melanogaster/genética , Família Multigênica , Receptores de Esteroides/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA/genética , Ecdisona/metabolismo , Éxons , Humanos , Dados de Sequência Molecular , Receptores de Esteroides/metabolismo , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Transfecção
8.
Circ Res ; 67(1): 11-22, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2364485

RESUMO

Transport parameters that describe a macromolecule entering the arterial wall from plasma can be obtained from concentration profiles of the labeled macromolecule entering the tissue. A new technique has been developed for measuring such concentration profiles, which offers spatial resolution superior to methods that measure profiles of radiolabeled macromolecules by serially sectioning tissue in planes parallel to the endothelium. In addition, this new method preserves cellular organization and tissue structure and permits measurement of concentration profiles underlying focal endothelial injuries or vascular lesions. The technique quantifies the concentration of a protein by measuring associated peroxidase activity. Although the present study was performed using horseradish peroxidase (HRP), the same principles can be applied to other macromolecules linked to HRP or microperoxidase. The colored reaction product of HRP was detected in transverse aortic sections using an image processing system. In the present study, profiles obtained by this new method were validated by comparison with HRP concentration profiles in rat aortas obtained by a serial slicing technique using radiolabeled HRP. We used the technique to measure high-resolution HRP concentration profiles in the intima and media of normal animals. These concentration profiles suggest that the internal elastic lamina acts as a major barrier to transport of macromolecules across the wall of the normal rat aorta. The new method should allow concentration profiles for macromolecules to be quantified in tissue surrounding vessels in the microcirculation, within the thickened intima of large vessels, and across coronary artery walls.


Assuntos
Aorta/metabolismo , Substâncias Macromoleculares , Animais , Peroxidase do Rábano Silvestre , Masculino , Concentração Osmolar , Ratos , Ratos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...