Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 9(8): 7651-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603000

RESUMO

A three-dimensional (3-D) cell culture system that allows control of both substrate stiffness and integrin binding density was created and characterized. This system consisted of two self-assembling peptide (SAP) sequences that were mixed in different ratios to achieve the desired gel stiffness and adhesiveness. The specific peptides used were KFE ((acetyl)-FKFEFKFE-CONH2), which has previously been reported not to support cell adhesion or MVN formation, and KFE-RGD ((acetyl)-GRGDSP-GG-FKFEFKFE-CONH2), which is a similar sequence that incorporates the RGD integrin binding site. Storage modulus for these gels ranged from ∼60 to 6000Pa, depending on their composition and concentration. Atomic force microscopy revealed ECM-like fiber microarchitecture of gels consisting of both pure KFE and pure KFE-RGD as well as mixtures of the two peptides. This system was used to study the contributions of both matrix stiffness and adhesiveness on microvascular network (MVN) formation of endothelial cells and the morphology of human mesenchymal stem cells (hMSC). When endothelial cells were encapsulated within 3-D gel matrices without binding sites, little cell elongation and no network formation occurred, regardless of the stiffness. In contrast, matrices containing the RGD binding site facilitated robust MVN formation, and the extent of this MVN formation was inversely proportional to matrix stiffness. Compared with a matrix of the same stiffness with no binding sites, a matrix containing RGD-functionalized peptides resulted in a ∼2.5-fold increase in the average length of network structure, which was used as a quantitative measure of MVN formation. Matrices with hMSC facilitated an increased number and length of cellular projections at higher stiffness when RGD was present, but induced a round morphology at every stiffness when RGD was absent. Taken together, these results demonstrate the ability to control both substrate stiffness and binding site density within 3-D cell-populated gels and reveal an important role for both stiffness and adhesion on cellular behavior that is cell-type specific.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Matriz Extracelular/química , Integrinas/química , Microvasos/crescimento & desenvolvimento , Oligopeptídeos/química , Engenharia Tecidual/métodos , Sítios de Ligação , Materiais Biomiméticos/química , Células Cultivadas , Módulo de Elasticidade , Humanos , Teste de Materiais , Mecanotransdução Celular/fisiologia , Neovascularização Fisiológica/fisiologia
2.
J Colloid Interface Sci ; 245(1): 142-62, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16290345

RESUMO

We develop a novel technique which deduces the surface tension in air of a fluid as a function of surface age, beginning at age zero. The technique utilizes pointwise measurements of perpendicular free surface profiles of a steady oscillating jet corresponding to a discretization interval on the order of 0.1 ms. We implement the technique on constant-surface-tension test fluids (100% ethanol and 15% ethanol/85% water by volume) to demonstrate the extent to which the technique can qualitatively capture that the surface tensions of these fluids are constant in time, and quantitatively produce values of these constants consistent with static measurements. We then implement the technique on jets of two agricultural surfactant mixtures, Triton X-405 and Triton X-100, and quantitatively deduce the decay of surface tension as a function of surfactant concentration.

3.
Biotechnol Prog ; 14(3): 517-26, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9622536

RESUMO

Polylactic acid (PLA) polymer film was degraded in abiotic and biotic environments to understand the role of microbes in the degradation process of lactic acid based polymers. The degradation studies were conducted in a well-characterized biotic system, an abiotic system, a sterile aqueous system, and a desiccated environment maintained at 40, 50, and 60 degrees C. The combination of experiments in different environments isolated the distinct effect of microbes, water, and temperature on the morphological changes in the polymer during degradation. Due to lack of availability of radiolabeled PLA, various analytical techniques were applied to observe changes in the rate and/or mechanism of degradation. CO2 evolved, weight loss, and molecular weights were measured to evaluate the extent of degradation. X-ray diffraction and differential scanning calorimetry techniques monitored the morphological changes in the polymer. FTIR was used as a semiquantitative tool to gather information about the chemistry of the degradative process. Neither of the above analytical techniques indicated any difference in the rate or mechanism of degradation attributable to the presence of microorganisms. The extent of degradation increased at higher process temperatures. FTIR data were evaluated for significant statistical difference by t-test hypothesis. The results confirmed hydrolysis of ester linkage as the primary mechanism of degradation of PLA. On the basis of these data, a probable path of PLA degradation has been suggested.


Assuntos
Ácido Láctico/química , Polímeros/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Hidrólise , Poliésteres , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...