Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(1): 101961, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33437941

RESUMO

Accurate prediction of the solubility of chemical substances in solvents remains a challenge. The sparsity of high-quality solubility data is recognized as the biggest hurdle in the development of robust data-driven methods for practical use. Nonetheless, the effects of the quality and quantity of data on aqueous solubility predictions have not yet been scrutinized. In this study, the roles of the size and the quality of data sets on the performances of the solubility prediction models are unraveled, and the concepts of actual and observed performances are introduced. In an effort to curtail the gap between actual and observed performances, a quality-oriented data selection method, which evaluates the quality of data and extracts the most accurate part of it through statistical validation, is designed. Applying this method on the largest publicly available solubility database and using a consensus machine learning approach, a top-performing solubility prediction model is achieved.

2.
Phys Rev E ; 96(3-1): 033313, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347055

RESUMO

Determining the pressure differential required to achieve a desired flow rate in a porous medium requires solving Darcy's law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the permeability coefficient is sampled at high spatial resolution, which makes solving Darcy's equation numerically prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to the fore the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to characterize the relative success of upscaling methods on a large sample of permeability coefficients that are above the percolation threshold. We introduce a technique based on mode-elimination renormalization group theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled using other methods, we find that MG is consistently more accurate, particularly due to its ability to address the tensorial nature of the coefficients. MG places a low computational demand, in the manner in which we have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that approach or are beyond the percolation threshold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...