Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(3): 035201, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29235441

RESUMO

Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

2.
Nanotechnology ; 23(13): 135301, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22418861

RESUMO

Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.

3.
Nanotechnology ; 22(35): 355706, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21821873

RESUMO

Scanning probe microscopy employing conductive probes is a powerful tool for the investigation and modification of electrical properties at the nanoscale. Application areas include semiconductor metrology, probe-based data storage and materials research. Conductive probes can also be used to emulate nanoscale electrical contacts. However, unreliable electrical contact and tip wear have severely hampered the widespread usage of conductive probes for these applications. In this paper we introduce a force modulation technique for enhanced nanoscale electrical sensing using conductive probes. This technique results in lower friction, reduced tip wear and enhanced electrical contact quality. Experimental results using phase-change material stacks and platinum silicide conductive probes clearly demonstrate the efficacy of the proposed technique. Furthermore, conductive-mode imaging experiments on specially prepared platinum/carbon samples are presented to demonstrate the widespread applicability of this technique.

4.
Nanotechnology ; 21(39): 395503, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20820095

RESUMO

Parallel frequency readout of an array of cantilevers is demonstrated using optical beam deflection with a single laser-diode pair. Multi-frequency addressing makes the individual nanomechanical response of each cantilever distinguishable within the received signal. Addressing is accomplished by exciting the array with the sum of all cantilever resonant frequencies. This technique requires considerably less hardware compared to other parallel optical readout techniques. Readout is demonstrated in beam deflection mode and interference mode. Many cantilevers can be readout in parallel, limited by the oscillators' quality factor and available bandwidth. The proposed technique facilitates parallelism in applications at the nano-scale, including probe-based data storage and biological sensing.


Assuntos
Dispositivos Lab-On-A-Chip , Nanotecnologia/métodos , Óptica e Fotônica , Campos Eletromagnéticos , Interferometria , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...