Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(1): e0116227, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617631

RESUMO

INTRODUCTION: The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice. METHODS: Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology. RESULTS: Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system. CONCLUSIONS: These data provide direct evidence that the α7nAChR in immune cells does not require typical ion channel activation to exert its antiinflammatory effects.


Assuntos
Anilidas/farmacologia , Artrite Experimental/tratamento farmacológico , Oxazóis/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/metabolismo , Anilidas/química , Animais , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Linhagem Celular , Inflamação/tratamento farmacológico , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Ligantes , Camundongos , Camundongos Endogâmicos , Oxazóis/química , Células PC12 , Piperazinas/química , Piridinas/química , Ratos , Xenopus
2.
PLoS One ; 9(2): e87923, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503862

RESUMO

Huntington's disease (HD) is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease. Brain-derived neurotrophic factor (BDNF) is a neuroprotective, secreted protein that binds with high affinity to the extracellular domain of the tropomyosin-receptor kinase B (TrkB) receptor promoting neuronal cell survival by activating the receptor and down-stream signaling proteins. Reduced cortical BDNF production and transport to the striatum have been implicated in HD pathogenesis; the ability to enhance TrkB signaling using a BDNF mimetic might be beneficial in disease progression, so we explored this as a therapeutic strategy for HD. Using recombinant and native assay formats, we report here the evaluation of TrkB antibodies and a panel of reported small molecule TrkB agonists, and identify the best candidate, from those tested, for in vivo proof of concept studies in transgenic HD models.


Assuntos
Anticorpos Monoclonais/farmacologia , Doença de Huntington/metabolismo , Receptor trkB/agonistas , Receptor trkB/metabolismo , Animais , Anticorpos Monoclonais/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Doença de Huntington/tratamento farmacológico , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...