Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 59(5): 579-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19583158

RESUMO

A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated instruments to produce multiple pollutant characterizations across a range of representative urban and rural locations in a new network referred to as the National Core Monitoring Network (NCore). The NCore parameters include carbon monoxide (CO), sulfur dioxide (SO2), reactive nitrogen (NOy), ozone (O3), and ammonia (NH3) gases and the major fine particulate matter (PM2.5) aerosol components (ions, elemental and organic carbon fractions, and trace metals). The addition of trace gas instruments, deployed at existing chemical speciation sites and designed to capture concentrations well below levels of national air quality standards, is intended to support both long-term epidemiological studies and regional-scale air quality model evaluation. In addition to designing the multiple pollutant NCore network, steps were taken to assess the current networks on the basis of spatial coverage and redundancy criteria, and mechanisms were developed to facilitate incorporation of continuously operating particulate matter instruments.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Monitoramento Ambiental/legislação & jurisprudência , Monitoramento Ambiental/métodos , Comunicação , Técnicas de Planejamento , Estados Unidos , United States Environmental Protection Agency
2.
Environ Sci Technol ; 39(13): 4953-60, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16053096

RESUMO

Ambient PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) samples collected at a rural monitoring site in Bondville, IL on every third day using Interagency Monitoring of Protected Visual Environments (IMPROVE) sampler were analyzed through the application of the positive matrix factorization (PMF). The particulate carbon fractions were obtained from the thermal optical reflectance method that divides particulate carbon into four organic carbon, pyrolyzed organic carbon (OP), and three elemental carbon fractions. A total of 257 samples collected between March 2001 and May 2003 analyzed for 35 species were used and eight sources were identified: summer-high secondary sulfate aerosol (40%), secondary nitrate aerosol (32%), gasoline vehicle (9%), OP-high secondary sulfate aerosol (7%), selenium-high secondary sulfate aerosol (4%), airborne soil (4%), aged sea salt (2%), and diesel emissions (2%). The compositional profiles for gasoline vehicle and diesel emissions are similar to those estimated in other U.S. areas. Backward trajectories indicate that the highly elevated airborne soil impacts were likely caused by Asian and Saharan dust storms. Potential source contribution function analyses show the potential source areas and pathways of secondary sulfate aerosols, especially the regional influences of the biogenic as well as anthropogenic secondary aerosol.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Poeira , Illinois , Óptica e Fotônica , Tamanho da Partícula , Solo , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...