Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol J ; 14(1): 118, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28637472

RESUMO

BACKGROUND: Cassava brown streak disease is emerging as the most important viral disease of cassava in Africa, and is consequently a threat to food security. Two distinct species of the genus Ipomovirus (family Potyviridae) cause the disease: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). To understand the evolutionary relationships among the viruses, 64 nucleotide sequences from the variable P1 gene from major cassava producing areas of east and central-southern Africa were determined. METHODS: We sequenced an amplicon of the P1 region of 31 isolates from Malawi and Tanzania. In addition to these, 33 previously reported sequences of virus isolates from Uganda, Kenya, Tanzania, Malawi and Mozambique were added to the analysis. RESULTS: Phylogenetic analyses revealed three major P1 clades of Cassava brown streak viruses (CBSVs): in addition to a clade of most CBSV and a clade containing all UCBSV, a novel, intermediate clade of CBSV isolates which has been tentatively called CBSV-Tanzania (CBSV-TZ). Virus isolates of the distinctive CBSV-TZ had nucleotide identities as low as 63.2 and 63.7% with other members of CBSV and UCBSV respectively. CONCLUSIONS: Grouping of P1 gene sequences indicated for distinct sub-populations of CBSV, but not UCBSV. Representatives of all three clades were found in both Tanzania and Malawi.


Assuntos
Variação Genética , Filogenia , Potyviridae/classificação , Potyviridae/genética , Proteínas Virais/genética , África Central , África Oriental , Genótipo , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/isolamento & purificação , Análise de Sequência de DNA
2.
J Gen Virol ; 91(Pt 5): 1365-72, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20071490

RESUMO

Cassava brown streak virus (CBSV) isolates were analysed from symptomatic cassava collected between 1997 and 2008 in the major cultivation regions of East Africa. An analysis of complete RNA genomes of seven isolates from Kenya, Tanzania, Mozambique, Uganda and Malawi revealed a common genome structure, but the isolates clearly clustered in two distinct clades. The first comprised isolates from Kenya, Uganda, Malawi, north-western Tanzania and the CBSV described previously, and shared between 87 and 95% nucleotide sequence identity, whilst the second included isolates from coastal regions of Mozambique and Tanzania, which shared only 70% nucleotide sequence identities with isolates of the first clade. When the amino acid sequences of viral proteins were compared, identities as low as 47% (Ham1) and 59% (P1) between the two clades were found. An antiserum obtained against the capsid protein of a clade 1 isolate identified a 43 kDa protein in clade 1 isolates and a 45 kDa protein in clade 2 isolates. Several cassava cultivars were susceptible to isolates of clade 2 but resistant to those of clade 1. The differences observed both in biological behaviour and in genomic and protein sequences indicate that cassava brown streak disease in East Africa is caused by at least two distinct virus species. It is suggested that those of clade 1 retain the species name Cassava brown streak virus, whilst those of clade 2 be classified as Cassava brown streak Mozambique virus.


Assuntos
Manihot/virologia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/isolamento & purificação , África Oriental , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Análise por Conglomerados , Reações Cruzadas , Genoma Viral , Genótipo , Dados de Sequência Molecular , Filogenia , Potyvirus/genética , Potyvirus/imunologia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
3.
Appl Microbiol Biotechnol ; 68(3): 368-75, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15800764

RESUMO

Resting spores extracted from wart (Synchytrium endobioticum)-infected potato tubers were used for DNA extraction and amplification of 18S rDNA. Analysis of the cloned, sequenced fragment revealed high similarity to members of the Chytridiomycota. Using this information, specific oligonucleotide probes were designed and arrayed onto glass slides for detection of the pathogen. Viral sequence information available in the databank was retrieved, or new viral sequences were generated, and used to design probes for specific detection of important quarantine viruses of potato. To determine the sensitivity and specificity of the oligonucleotide probes, total RNA from infected plants was reverse transcribed, labelled with Cyanine 5, and hybridised with the microarray. A significant number of the oligonucleotide probes exhibited high specificity to S. endobioticum, Andean potato latent virus, Andean potato mottle virus, Potato black ringspot virus, and Potato spindle tuber viroid. Hybridisation signals of sub-arrays within slides were reproducible (r = 0.79) with a high correlation coefficient of hybridisation repetitions (0.73). Our results demonstrate the potential of microarray-based hybridisation for identification of multiple pathogen targets, which will find application in quarantine laboratories, where parallel testing for diverse pathogens is essential.


Assuntos
Quitridiomicetos/isolamento & purificação , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Solanum tuberosum/microbiologia , Quitridiomicetos/genética , Produtos Agrícolas/microbiologia , Sondas de Oligonucleotídeos , Doenças das Plantas/microbiologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...