Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 604(7906): 447-450, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444319

RESUMO

Nova explosions are caused by global thermonuclear runaways triggered in the surface layers of accreting white dwarfs1-3. It has been predicted4-6 that localized thermonuclear bursts on white dwarfs can also take place, similar to type-I X-ray bursts observed in accreting neutron stars. Unexplained rapid bursts from the binary system TV Columbae, in which mass is accreted onto a moderately strong magnetized white dwarf from a low-mass companion, have been observed on several occasions in the past 40 years7-11. During these bursts, the optical/ultraviolet luminosity increases by a factor of more than three in less than an hour and fades in around ten hours. Fast outflows have been observed in ultraviolet spectral lines7, with velocities of more than 3,500 kilometres per second, comparable to the escape velocity from the white dwarf surface. Here we report on optical bursts observed in TV Columbae and in two additional accreting systems, EI Ursae Majoris and ASASSN-19bh. The bursts have a total energy of approximately 10-6  times than those of classical nova explosions (micronovae) and bear a strong resemblance to type-I X-ray bursts12-14. We exclude accretion or stellar magnetic reconnection events as their origin and suggest thermonuclear runaway events in magnetically confined accretion columns as a viable explanation.

2.
Nature ; 444(7120): 730-2, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17151661

RESUMO

A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...