Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 622-623: 127-139, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223074

RESUMO

The trophic transfer of cyclic methylsiloxanes (cVMS) in aquatic ecosystems is an important criterion for assessing bioaccumulation and ecological risk. Bioaccumulation and trophic transfer of cVMS, specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated for the marine food webs of the Inner and Outer Oslofjord, Norway. The sampled food webs included zooplankton, benthic macroinvertebrates, shellfish, and finfish species. Zooplankton, benthic macroinvertebrates, and shellfish occupied the lowest trophic levels (TL ≈2 to 3); northern shrimp (Pandalus borealis) and Atlantic herring (Clupea harengus) occupied the middle trophic levels (TL ≈3 to 4), and Atlantic cod (Gadus morhua) occupied the highest tropic level (TL>4.0). Trophic dynamics in the Oslofjord were best described as a compressed food web defined by demersal and pelagic components that were confounded by a diversity in prey organisms and feeding relationships. Lipid-normalized concentrations of D4, D5, and D6 were greatest in the lowest trophic levels and significantly decreased up the food web, with the lowest concentrations being observed in the highest trophic level species. Trophic magnification factors (TMF) for D4, D5, and D6 were <1.0 (range 0.3 to 0.9) and were consistent between the Inner and Outer Oslofjord, indicating that exposure did not impact TMF across the marine food web. There was no evidence to suggest biomagnification of cVMS in the Oslofjord. Rather, results indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food webs.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Siloxanas/análise , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise , Animais , Peixes , Noruega , Pandalidae , Frutos do Mar , Zooplâncton
2.
Chemosphere ; 93(5): 749-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23177710

RESUMO

Contamination and analytical variation can significantly hinder trace analysis of cyclic methyl volatile siloxanes (cVMS); potentially resulting in the report of false positives at concentrations approaching detection limits. To assess detection and variation associated with trace cVMS analysis in environmental matrices, a co-operative laboratory comparison for the analysis of octametylcyclotetrasiloxane (D4), decamethylcylcopentasiloxane (D5), and dodecametylcyclohexasiloxane (D6) in sediment and biota from the Svalbard Archipelago was conducted. Two definitions of detection limits were evaluated in this study; method detection limits (MDL, matrix defined) and limits of detection (LOD, solvent defined). D5 was the only cVMS detected above both LOD (0.08-0.81ngg(-1)ww) and MDL (0.47-2.36ngg(-1)ww) within sediment by all laboratories where concentrations ranged from 0.55 to 3.91ngg(-1)ww. The percentage of positive detects for D5 decreased by 80% when MDL was defined as the detection limit. D5 was also detected at the highest frequency among all laboratories in fish liver with concentrations ranging from 0.72 to 345ngg(-1)ww. Similar to sediment, percentage of positive detects for D5 decreased by 60% across all laboratories for fish livers when using MDL (0.68-3.49ngg(-1)ww). Similar observations were seen with both D4 and D6, indicating that sample matrix significantly contributes to analytical response variation. Despite differences in analytical methods used between laboratories, good agreement was obtained when using MDL to define detection limits. This study shows the importance of incorporating variation introduced by sample matrices into detection limit calculations to insure data accuracy of cVMS at low concentrations.


Assuntos
Monitoramento Ambiental/métodos , Siloxanas/análise , Poluentes Químicos da Água/análise , Animais , Peixes/metabolismo , Limite de Detecção , Siloxanas/metabolismo , Svalbard , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...