Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 26(4): 970-976, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074348

RESUMO

A scalable 5-step synthesis of the diazacarbazole derivative 1 used as tau PET tracer precursor is reported. Key features of this synthesis include a Buchwald-Hartwig amination, a Pd catalyzed CH activation and a Suzuki-Miyaura cross-coupling.


Assuntos
Carbazóis/química , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Aminação , Carbazóis/síntese química , Carbazóis/metabolismo , Catálise , Humanos , Paládio/química , Tomografia por Emissão de Pósitrons , Proteínas tau/química
2.
J Nucl Med ; 59(4): 675-681, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28970331

RESUMO

Tau aggregates and amyloid-ß (Aß) plaques are key histopathologic features in Alzheimer disease (AD) and are considered targets for therapeutic intervention as well as biomarkers for diagnostic in vivo imaging agents. This article describes the preclinical in vitro and in vivo characterization of 3 novel compounds-RO6958948, RO6931643, and RO6924963-that bind specifically to tau aggregates and have the potential to become PET tracers for future human use. Methods: RO6958948, RO6931643, and RO6924963 were identified as high-affinity competitors at the 3H-T808 binding site on native tau aggregates in human late-stage AD brain tissue. Binding of tritiated compounds to brain tissue sections of AD patients and healthy controls was analyzed by macro- and microautoradiography and by costaining of tau aggregates and Aß plaques on the same tissue section using specific antibodies. All 3 tracer candidates were radiolabeled with a PET nuclide and tested in vivo in tau-naïve baboons to assess brain uptake, distribution, clearance, and metabolism. Results:3H-RO6958948, 3H-RO6931643, and 3H-RO6924963 bound with high affinity and specificity to tau aggregates, clearly lacking affinity for concomitant Aß plaques in human AD Braak V tissue sections. The specificity of all 3 radioligands for tau aggregates was supported, first, by binding patterns in AD sections comparable to the tau-specific radioligand 3H-T808; second, by very low nonspecific binding in brain tissue devoid of tau pathology, excluding significant radioligand binding to any other central nervous system target; and third, by macroscopic and microscopic colocalization and quantitative correlation of radioligand binding and tau antibody staining on the same tissue section. RO6958948, RO6931643, and RO6924963 were successfully radiolabeled with a PET nuclide at high specific activity, radiochemical purity, and yield. After intravenous administration of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 to baboons, PET scans indicated good brain entry, rapid washout, and a favorable metabolism pattern. Conclusion:18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 are promising PET tracers for visualization of tau aggregates in AD. Head-to-head comparison and validation of these tracer candidates in AD patients and healthy controls will be reported in due course.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agregados Proteicos , Traçadores Radioativos , Proteínas tau/química , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...