Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 83(10): 10E347, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23127004

RESUMO

We propose a new interferometer concept that can realize electron-density distribution measurement with high spatial and moderate temporal resolution. The image non-radiative dielectric guide antenna can probe a wide measurement area simultaneously. We fabricated the antenna with an electromagnetic simulator and confirmed that the simulated and measured radiation patterns are consistent with each other. In addition, we found that the antenna shows the required characteristics such as scanning characteristics, which depend on the input frequency.

2.
Rev Sci Instrum ; 79(10): 10F112, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044596

RESUMO

Reflectometry has been expected to be one of the key diagnostics to measure density profiles. We have applied an ultrashort-pulse reflectometry (USPR) system to Large Helical Device in the National Institute for Fusion Science. Wide frequency band system is required to obtain wide density profile since an incident wave is reflected at the density layer corresponding to its cutoff frequency. The reflectometry utilizes an impulse with less than 30 ps pulse width as a source. Since the bandwidth of an impulse has an inverse relation to the pulse width, we can cover the frequency range of micro- to millimeter waves (18-40 GHz) with a single source. The density profiles can be reconstructed by collecting time-of-flight (TOF) signals for each frequency component of an impulse reflected from the corresponding cutoff layer. We utilize the signal record analysis (SRA) method to reconstruct the density profiles from the TOF signal. The effectiveness of the SRA method for the profile reconstruction is confirmed by a simulation study of the USPR using a finite-difference time domain method.

3.
Rev Sci Instrum ; 79(10): 10F115, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044599

RESUMO

Plasma experiments on KSTAR are scheduled to start up this year (2008). We have developed an electron cyclotron emission (ECE) radiometer to measure the radial electron temperature profiles in KSTAR experiments. The radiometer system consists, briefly, of two downconversion stages, amplifiers, bandpass filter banks, and video detectors. These components are made commercially or developed in house. The system detects ECE power in the frequency range from 110 to 196 GHz, the detected signal being resolved by means of 48 frequency windows. Before installation of this system on KSTAR, we installed a part of this system on large helical device (LHD) to study the system under similar plasma conditions. In this experiment, the signal amplitude, considered to be proportional to the electron temperature, is measured. The time-dependent traces of the electron temperature measured by this radiometer are in good agreement with those provided by the LHD Michelson spectrometer. The system noise level which limits the minimum measurable temperature (converted to the electron temperature) is about 30 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...