Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959648

RESUMO

Biofilms, mainly comprised of bacteria, form on materials' surfaces due to bacterial activity. They are generally composed of water, extracellular polymeric substances (polysaccharides, proteins, nucleic acids, and lipids), and bacteria. Some bacteria that form biofilms cause periodontal disease, corrosion of the metal materials that make up drains, and slippage. Inside of a biofilm is an environment conducive to the growth and propagation of bacteria. Problems with biofilms include the inability of disinfectants and antibiotics to act on them. Therefore, we have investigated the potential application of alternating electromagnetic fields for biofilm control. We obtained exciting results using various materials' specimens and frequency conditions. Through these studies, we gradually understood that the combination of the type of bacteria, the kind of material, and the application of an electromagnetic field with various low frequencies (4 kHz-12 kHz) changes the circumstances of the onset of the biofilm suppression effect. In this study, relatively high frequencies (20 and 30 kHz) were applied to biofilms caused by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), and quantitative evaluation was performed using staining methods. The sample surfaces were analyzed by Raman spectroscopy using a Laser Raman spectrometer to confirm the presence of biofilms on the surface.

2.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234069

RESUMO

Biofilms have caused many problems, not only in the industrial fields, but also in our daily lives. Therefore, it is important for us to control them by evaluating them properly. There are many instrumental analytical methods available for evaluating formed biofilm qualitatively. These methods include the use of Raman spectroscopy and various microscopes (optical microscopes, confocal laser microscopes, scanning electron microscopes, transmission electron microscopes, atomic force microscopes, etc.). On the other hand, there are some biological methods, such as staining, gene analyses, etc. From the practical viewpoint, staining methods seem to be the best due to various reasons. Therefore, we focused on the staining method that used a crystal violet solution. In the previous study, we devised an evaluation process for biofilms using a color meter to analyze the various staining situations. However, this method was complicated and expensive for practical engineers. For this experiment, we investigated the process of using regular photos that were quantified without any instruments except for digitized cameras. Digitized cameras were used to compare the results. As a result, we confirmed that the absolute values were different for both cases, respectively. However, the tendency of changes was the same. Therefore, we plan to utilize the changes before and after biofilm formation as indicators for the future.

3.
Materials (Basel) ; 15(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806818

RESUMO

Biofilms are a result of bacterial activities and are found everywhere. They often form on metal surfaces and on the surfaces of polymeric compounds. Biofilms are sticky and mostly consist of water. They have a strong resistance to antimicrobial agents and can cause serious problems for modern medicine and industry. Biofilms are composed of extracellular polymeric substances (EPS) such as polysaccharides produced from bacterial cells and are dominated by water at the initial stage. In a series of experiments, using Escherichia coli, we developed three types of laboratory biofilm reactors (LBR) to simulate biofilm formation. For the first trial, we used a rotary type of biofilm reactor for stirring. For the next trial, we tried another rotary type of reactor where the circular plate holding specimens was rotated. Finally, a circular laboratory biofilm reactor was used. Biofilms were evaluated by using a crystal violet staining method and by using Raman spectroscopy. Additionally, they were compared to each other from the practical (industrial) viewpoints. The third type was the best to form biofilms in a short period. However, the first and second were better from the viewpoint of "ease of use". All of these have their own advantages and disadvantages, respectively. Therefore, they should be properly selected and used for specific and appropriate purposes in the future.

4.
Sensors (Basel) ; 22(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591238

RESUMO

Biofilms are the result of bacterial activity. When the number of bacteria (attached to materials' surfaces) reaches a certain threshold value, then the bacteria simultaneously excrete organic polymers (EPS: extracellular polymeric substances). These sticky polymers encase and protect the bacteria. They are called biofilms and contain about 80% water. Other components of biofilm include polymeric carbon compounds such as polysaccharides and bacteria. It is well-known that biofilms cause various medical and hygiene problems. Therefore, it is important to have a sensor that can detect biofilms to solve such problems. Graphene is a single-atom-thick sheet in which carbon atoms are connected in a hexagonal shape like a honeycomb. Carbon compounds generally bond easily to graphene. Therefore, it is highly possible that graphene could serve as a sensor to monitor biofilm formation and growth. In our previous study, monolayer graphene was prepared on a glass substrate by the chemical vapor deposition (CVD) method. Its biofilm forming ability was compared with that of graphite. As a result, the CVD graphene film had the higher sensitivity for biofilm formation. However, the monolayer graphene has a mechanical disadvantage when used as a biofilm sensor. Therefore, for this new research project, we prepared bilayer graphene with high mechanical strength by using the CVD process on copper substrates. For these specimens, we measured the capacitance component of the specimens' impedance. In addition, we have included a discussion about the possibility of applying them as future sensors for monitoring biofilm formation and growth.


Assuntos
Doenças Cardiovasculares , Grafite , Bactérias , Biofilmes , Carbono , Impedância Elétrica , Humanos , Polímeros
5.
Materials (Basel) ; 15(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35329724

RESUMO

The sulfuric acid permeation and biofilm formation behaviors of polysiloxane films have been investigated, and simple methods for evaluating the sulfuric acid permeation and biofilm formation behaviors have been proposed in this paper. The polysiloxane films used in these experiments were practically impermeable to the aqueous sulfuric acid solution, and the amount of biofilm formation varied depending on the composition of the films. Further, the amount of sulfuric acid permeation can be estimated by measuring the polarization curves of polysiloxane films with different thicknesses formed on iron electrodes. By measuring the adhesion work of pure water and simulated biofilm droplets on polysiloxane films of different compositions, we can estimate the resistance of biofilm formation on the polysiloxane films.

6.
Sci Rep ; 9(1): 8070, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147580

RESUMO

A biofilm has a unique structure composed of microorganisms, extracellular polymeric substances (EPSs), etc., and it is layered on a substrate in water. In material science, it is important to detect the biofilm formed on a surface to prevent biofouling. EPSs, the major component of the biofilm, mainly consist of polysaccharides, proteins, nucleic acids, and lipids. Because these biomolecules have a variety of hydrophilicities or hydrophobicities, the substrate covered with the biofilm shows different wettability from the initial state. To detect the biofilm formation, this study employed a liquid-squeezing-based wettability assessment method with a simple wettability index: the liquid-squeezed diameter of a smaller value indicates higher wettability. The method is based on the liquid-squeezing behaviour of a liquid that covers sample surfaces when an air-jet is applied. To form the biofilm, polystyrene surfaces were immersed and incubated in a water-circulated bioreactor that had collected microorganisms in ambient air. After the 14-d incubation, good formation of the biofilm on the surfaces was confirmed by staining with crystal violet. Although the contact angles of captive bubbles on the surfaces with the biofilm were unmeasurable, the liquid-squeezing method could distinguish between hydrophilic and hydrophobic initial surfaces with and without biofilm formation using the diameter of the liquid-squeezed area. The surface wettability is expected to be a promising property for in-situ detection of biofilm formation on a macroscopic scale.


Assuntos
Biofilmes , Incrustação Biológica/prevenção & controle , Matriz Extracelular de Substâncias Poliméricas/química , Ciência dos Materiais/métodos , Corantes/química , Violeta Genciana/química , Interações Hidrofóbicas e Hidrofílicas , Ciência dos Materiais/instrumentação , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Coloração e Rotulagem/métodos , Propriedades de Superfície , Água/química , Molhabilidade
7.
Materials (Basel) ; 9(10)2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28773945

RESUMO

A laboratory biofilm reactor (LBR) was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni), along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly)-cultured solution with E-coli formed over 48-72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...