Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(7): 5121-8, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26658349

RESUMO

Earth abundant semiconducting type II Si clathrates have attracted attention as photovoltaic materials due to their wide band gaps. To realize the semiconducting properties of these materials, guest species that arise during the synthesis process must be completely evacuated from the host cage structure post synthesis. A common guest species utilized in the synthesis of Si clathrates is Na (metal), which templates the clathrate cage formation. Previous experimental investigations have identified that it is possible to evacuate Na from type II clathrates to an occupancy of less than 1 Na per unit cell. This work investigates the energetics, kinetics, and resulting mechanism of Na diffusion through type II Si clathrates by means of biased molecular dynamics and kinetic Monte Carlo simulations. Well-tempered metadynamics has been used to determine the potential of mean force for Na moving between clathrate cages, from which the thermodynamic preferences and transition barrier heights have been obtained. Kinetic Monte Carlo simulations based on the metadynamics results have identified the mechanism of Na diffusion in type II Si clathrates. The overall mechanism consists of a coupled diffusive process linked via electrostatic guest-guest interactions. The large occupied hexakaidechedral cages initially empty their Na guests to adjacent empty large cages, thereby changing the local electrostatic environment around the occupied small pentagonal dodecahedral cages and increasing the probability of Na guests to leave the small cages. This coupled process continues through the cross-over point that is identified as the point where large and small cages are equally occupied by Na guests. Further Na removal results in the majority of guests residing in the large cages as opposed to the small cages, in agreement with experiments, and ultimately a Na free structure.

2.
J Colloid Interface Sci ; 343(2): 529-36, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20036368

RESUMO

The mechanisms by which hydrates deposit in a petroleum production line are related to pipeline surface properties, fluid composition and properties, and water cut. In this work, adhesion forces between cyclopentane hydrates and solid surfaces were investigated as a function of the solid material, the presence of water and the presence of petroleum acids in the oil phase. The influence of dissolved water on hydrate adhesion forces was also investigated. The results show that the adhesion force between hydrates and solid surfaces was dependent on the surface material; solids with low surface free energy lead to the lowest adhesion forces. The adhesion force was strongly dependent on the presence of water in the system. When a water drop was deposited on the solid surface, the adhesion force between the hydrate and the solid surface was more than 10 times larger than hydrate-hydrate adhesion forces. The presence of a water-saturated oil phase also led to an increase in adhesion force between hydrate particles. Adhesion forces were highest when the solid surfaces are water-wet. Addition of petroleum acids to the oil phase drastically reduced adhesion forces.

3.
J Phys Chem B ; 111(30): 8830-5, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17625823

RESUMO

Knowledge of thermal expansivity can aid in the understanding of both microscopic and macroscopic behavior of clathrate hydrates. Diffraction studies have shown that hydrate volume changes significantly (as much as 1.5% over 50 K) as a function of temperature. It has been demonstrated previously via statistical mechanics that a minor change in hydrate volume (e.g., a 1.5% change in volume or 0.5% change in lattice parameter) can lead to a major change in the predicted hydrate formation pressure (e.g., >15% at >100 MPa for methane). Because of this sensitivity, hydrate thermal expansivity measurements, for both Structures I and II with various guests, are needed help quantify volume distortions in hydrate lattices to ensure accurate hydrate phase equilibria predictions. In addition to macroscopic phase equilibria, the thermal expansion of different hydrates can give information about the interactions between the guest molecules and the host lattice. In this work, the hydrate lattice parameters for four Structure I (C2H6, CO2, 47% C2H6 + 53% CO2, and 85% CH4 + 15% CO2) and seven Structure II (C3H8, 60% CH4 + 40% C3H8, 30% C2H6 + 70% C3H8, 18% CO2 + 82% C3H8, 87.6% CH4 + 12.4% i-C4H10, 95% CH4 + 5% C5H10O, and a natural gas mixture) systems were measured as a function of temperature. The lattice parameter measurements were combined with existing literature values. Both sI and sII hydrates, with a few exceptions, had a common thermal expansivity, independent of hydrate guest. Many guest-dependent correlations for linear thermal expansivity have been proposed. However, we present two guest-independent, structure-dependent correlations for sI and sII lattices, which have been developed to express the normalized hydrate lattice parameters (and therefore volume) as a function of temperature.

4.
J Synchrotron Radiat ; 3(Pt 5): 220-4, 1996 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16702682

RESUMO

A high-pressure low-temperature cell has been developed for in-situ diffraction studies of carbon dioxide and propane gas hydrate crystallization. The design and implementation of the cell, which can operate up to 3.5 MPa and down to 253 K, are described. Using synchrotron energy-dispersive X-ray diffraction, the first growth of the hydrate crystals from solution has been successfully observed. The lattice parameters of the hydrate crystals were found to be 11.927 (2) and 17.196 (2) A, respectively.

5.
Environ Sci Pollut Res Int ; 3(1): 20-3, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24234881

RESUMO

Bench-scale experiments have been conducted to evaluate a series of titania-supported Pt-Pd (as oxides) catalysts in the presence and absence of MoO3 and Fe2O3 additives for their effectiveness in the complete catalytic oxidation of volatile organic compounds (VOCs) in air likely to be found in waste gases. Under oxidizing conditions, all of the catalysts promoted the complete oxidation of VOCs to CO2 and H2O. 99 % Conversion was achieved with a C2H4-C2H6 gas mixture in air at temperatures between about 160-450 °C and at a space velocity of 20,000 h(-1). Oxidation activity for the titania supported catalysts were found to decrease in the order Pt-Pd-Mo-Fe > Pt-Pd-Mo > Pt-Pd-Fe > Pt-Pd. However, the addition of MoO3 and Fe2O3 increase the catalyst activity and reduce the reaction temperature for the complete destruction. Ageing was also performed in order to study the stability of the most active catalyst. Pt-Pd-Mo-Fe (as oxides) on titania catalyst is effective in oxidizing a wide range of volatile organic compounds at relatively low temperatures (220-405 °C) and and at a space velocity of 40,000 h(-1) and is resistant to poisoning by halogenated and amine volatile organic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...