Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 210: 114325, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500309

RESUMO

The sensitivity and limit-of-detection (LOD) of the traditional surface-enhanced Raman spectroscopy (SERS) platform suffer from the requirement of precise positioning of small analytes, including DNAs and bacteria, into narrow hotspots. In this study, a novel SERS sensor was developed using electrochemical deposition onto metal nanopillars (ECOMPs) combined with complementary DNAs (cDNAs) for the detection of pathogenic bacteria. Applying a redox potential to AuCl4- ions actively engineered the organometallic hotspots based on the cDNAs in a short time (<10 min) and simultaneously produced SERS signals. Because of the influence of potential-driven morphological properties on the SERS efficiency in the cDNA domains and the resonant coupling of internal fields with the fields confined between adjacent ECOMPs-cDNAs, the optimum growth time was determined to be 5 min. The EC-SERS detection and discrimination of Enterococcus faecium and Staphylococcus aureus were successfully carried out because of the DNA complementarity. Compared with plasmonic metal nanopillars (MPs)-cDNAs, the enhancement factor of the ECOMPs-cDNAs was estimated to be ∼2.0 × 103. A quantitative investigation revealed that a highly linear progression in the target DNA concentration range (0.05-100 nM) and a LOD of ∼0.035 nM were achieved. The specificity of the ECOMPs-cDNAs was validated by cross-hybridization. The platform was also used to assay human whole blood containing 0.1 nM bacterial DNAs. The proposed strategy provides the potential for highly sensitive SERS-based multiplex DNA detection in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , DNA , DNA Bacteriano/genética , DNA Complementar , Ouro/química , Humanos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
2.
ACS Appl Mater Interfaces ; 13(2): 3024-3032, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33404230

RESUMO

A wearable surface-enhanced Raman scattering (SERS) sensor has been developed as a patch type to utilize as a molecular sweat sensor. Here, the SERS patch sensor is designed to comprise a sweat-absorbing layer, which is an interface to the human skin, an SERS active layer, and a dermal protecting layer that prevents damage and contaminations. A silk fibroin protein film (SFF) is a basement layer that absorbs aqueous solutions and filtrates molecules larger than the nanopores created in the ß-sheet matrix of the SFF. On the SFF layer, a plasmonic silver nanowire (AgNW) layer is formed to enhance the Raman signal of the molecules that penetrated through the SERS patch in a label-free method. A transparent dermal protecting layer (DP) allows laser penetration to the AgNW layer enabling Raman measurement through the SERS patch without its detachment from the surface. The molecular detection capability and time-dependent absorption properties of the SERS patch are investigated, and then, the feasibility of its use as a wearable drug detection sweat sensor is demonstrated using 2-fluoro-methamphetamine (2-FMA) on the human cadaver skin. It is believed that the developed SERS patch can be utilized as various flexible and wearable biosensors for healthcare monitoring.


Assuntos
Técnicas Biossensoriais/instrumentação , Análise Espectral Raman/instrumentação , Suor/química , Dispositivos Eletrônicos Vestíveis , Animais , Bombyx/química , Estimulantes do Sistema Nervoso Central/análise , Monitoramento de Medicamentos/instrumentação , Fibroínas/química , Humanos , Metanfetamina/análogos & derivados , Metanfetamina/análise , Nanofios/química , Prata/química , Propriedades de Superfície
3.
Analyst ; 146(1): 305-314, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146158

RESUMO

A cyclodextrin-decorated gold nanosatellite (AuNSL) substrate was developed as a surface-enhanced Raman scattering sensor for the selective sensing of bipyridylium pesticides such as paraquat (PQ), diquat (DQ), and difenzoquat (DIF). The AuNSL structure was fabricated via vacuum deposition of gold nanoparticles (AuNPs) on a gold nanopillar substrate, and a large density of hot-spots was formed for Raman signal enhancement. Thiolated ß-cyclodextrin (SH-CD) was surface-modified on the AuNSL as a chemical receptor. The detection limit of PQ, DQ, and DIF on the SH-CD-coated AuNSL (CD-AuNSL) was 0.05 ppm for each, and showed linear correlation in a concentration range of 10 ppm-0.05 ppm. Then, selective bipyridylium pesticide detection was performed by comparing the Raman intensity of each pesticide with and without the washing step. After the washing step, 90% of the PQ, DQ, and DIF Raman signals were maintained on the CD-AuNSL substrate with a uniform selectivity in a mapping area of 200 µm × 200 µm. Furthermore, selective pesticide detection was performed using a ground-apple solution without pretreatment. Raman signals were clearly observed after the washing step and they showed a limit of detection down to a concentration of 0.05 ppm for each pesticide. Principal component analysis (PCA) of the binary and ternary mixtures of PQ, DQ, and DIF showed that each component could be easily identified via the typical Raman fingerprint analysis. The developed CD-AuNSL is expected to be applied for various chemical sensors, especially for pyridine-containing toxic substances in the environment and metabolite biomarkers in biofluids.


Assuntos
Ciclodextrinas , Nanopartículas Metálicas , Praguicidas , Ouro , Praguicidas/análise , Análise Espectral Raman
4.
ACS Appl Mater Interfaces ; 10(12): 10388-10397, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29505228

RESUMO

A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.


Assuntos
Nanofios , Bacteriófago M13 , Praguicidas , Prata , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...