Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(46): 29101-29112, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127758

RESUMO

Patients with amyotrophic lateral sclerosis (ALS) can have abnormal TDP-43 aggregates in the nucleus and cytosol of their surviving neurons and glia. Although accumulating evidence indicates that astroglial dysfunction contributes to motor neuron degeneration in ALS, the normal function of TDP-43 in astrocytes are largely unknown, and the role of astroglial TDP-43 loss to ALS pathobiology remains to be clarified. Herein, we show that TDP-43-deleted astrocytes exhibit a cell-autonomous increase in GFAP immunoreactivity without affecting astrocyte or microglia proliferation. At the transcriptomic level, TDP-43-deleted astrocytes resemble A1-reactive astrocytes and induce microglia to increase C1q expression. These astrocytic changes do not cause loss of motor neurons in the spinal cord or denervation at the neuromuscular junction. In contrast, there is a selective reduction of mature oligodendrocytes, but not oligodendrocyte precursor cells, suggesting triglial dysfunction mediated by TDP-43 loss in astrocytes. Moreover, mice with astroglial TDP-43 deletion develop motor, but not sensory, deficits. Taken together, our results demonstrate that TDP-43 is required to maintain the protective functions of astrocytes relevant to the development of motor deficits in mice.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fenótipo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Oligodendroglia/metabolismo , Transcriptoma
2.
NMR Biomed ; 31(12): e4007, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260561

RESUMO

Recent studies suggest that neurodegenerative diseases could affect brain structure and function in disease-specific network patterns; however, how spontaneous activity affects structural covariance network (SC) is not clear. We hypothesized that hyper-excitability in Huntington disease (HD) disrupts the coordinated structural and functional connectivity, and treatment with memantine helps to reduce excitotoxicity and normalize the connectivity. MRI was conducted to measure somatosensory activation, resting-state functional-connectivity (rsFC), SC, amplitude of low frequency fluctuation (ALFF) and ALFF covariance (ALFFC) in the YAC128 mouse model of HD. We found somatosensory activation was unchanged but the subcortical ALFF was increased in HD mice, indicating subcortical but not cortical hyperactivity. The reduced sensorimotor rsFC but spared hippocampal and default mode networks in the HD mice was consistent with the more pronounced impairment in motor function compared with cognitive performance. The disease suppressed SC globally and reduced ALFFC in the basal ganglia network as well as its anti-correlation with the default mode network. By comparing these connectivity measures, we found that the originally coupled rsFC-SC relationship was impaired whereas SC-ALFFC correlation was increased by HD, suggesting disease facilitated covariation of brain volume and activity amplitude but not neural synchrony. The comparison with mono-synaptic axonal projection supports the hypothesis that rsFC, but not SC or ALFFC, is highly dependent on structural connectivity under healthy conditions. Treatment with memantine had a strong effect on normalizing the SC and reducing ALFF while slightly increasing other connectivity measures and restoring the rsFC-SC coupling, which is consistent with its effect on alleviating hyper-excitability and improving the coordinated neural growth. These results indicate that HD affects the cerebral structure-function relationship which could be partially reverted by NMDA antagonism. These connectivity measures provide unique insights into pathological and pharmaceutical effects in brain circuitry, and could be translatable biomarkers for evaluating drug effect and refining its efficacy.


Assuntos
Conectoma , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética , Animais , Axônios/patologia , Comportamento Animal , Cognição , Modelos Animais de Doenças , Estimulação Elétrica , Humanos , Masculino , Memantina , Camundongos , Atividade Motora , Rede Nervosa/fisiopatologia , Oxigênio/sangue , Descanso , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...