Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463549

RESUMO

This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves (GFWs) generated by a membrane acoustic waveguide actuator (MAWA). By harnessing the potential of GFWs, cavity-agnostic advanced particle manipulation functions are achieved, unlocking new avenues for microfluidic systems and lab-on-a-chip development. The localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising characteristics. Unlike traditional acoustofluidic technologies, the GFWs propagating on the MAWA's membrane waveguide allow for cavity-agnostic particle manipulation, irrespective of the resonant properties of the fluidic chamber. Moreover, the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane waveguide. Experimental demonstrations using two types of particles include in-sessile-droplet particle transport, mixing, and spatial separation based on particle diameter, along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS channels. These experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA's compatibility with existing microfluidic systems.

2.
Lab Chip ; 23(7): 1865-1878, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852544

RESUMO

Precision manipulation techniques in microfluidics often rely on ultrasonic actuators to generate displacement and pressure fields in a liquid. However, strategies to enhance and confine the acoustofluidic forces often work against miniaturization and reproducibility in fabrication. This study presents microfabricated piezoelectric thin film membranes made via silicon diffusion for guided flexural wave generation as promising acoustofluidic actuators with low frequency, voltage, and power requirements. The guided wave propagation can be dynamically controlled to tune and confine the induced acoustofluidic radiation force and streaming. This provides for highly localized dynamic particle manipulation functionalities such as multidirectional transport, patterning, and trapping. The device combines the advantages of microfabrication and advanced acoustofluidic capabilities into a miniature "drop-and-actuate" chip that is mechanically robust and features a high degree of reproducibility for large-scale production. The membrane acoustic waveguide actuators offer a promising pathway for acoustofluidic applications such as biosensing, organoid production, and in situ analyte transport.

4.
Sci Rep ; 5: 10144, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017924

RESUMO

Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery.


Assuntos
Peptídeos/análise , Análise Espectral Raman , Algoritmos , Ligantes , Nanopartículas/química , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Dióxido de Silício/química
5.
Lab Chip ; 14(1): 237-43, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24202619

RESUMO

This paper describes the fabrication of a nanoslit membrane-integrated fluidic chip (Nanoslit-Chip) used for trapping and concentrating micro-/nano-particles of desired size and its application in detecting biological molecules based on target-induced particle aggregation. To trap particles of a specific size, a large scale uniform sized nanoslit fluid channel array is fabricated on a silicon dioxide membrane. A small number of fluorescence labeled particles in a large volume of solution are concentrated into a monolayer of particles in a small nanoslit membrane, which enables us to effectively quantify them via fluorescence intensity. In addition, the particles of desired size (1.8 µm) are readily separated from the mixture of particles with a different size (450 nm) in Nanoslit-Chip size, and then quantified via fluorescence measurements. Finally, the Nanoslit-Chip is successfully applied to the sensitive detection of proteins by target-induced particle aggregation, trapping, and quantification. This shows its potential as a biological and clinical device for quantitative and sensitive detection of biological molecules.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Nanoestruturas/química , Proteínas/análise , Animais , Biotinilação , Bovinos , Corantes Fluorescentes/química , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Ligação Proteica , Soroalbumina Bovina/análise , Soroalbumina Bovina/metabolismo , Estreptavidina/metabolismo
6.
Anal Bioanal Chem ; 404(8): 2267-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22986986

RESUMO

This paper describes a temperature-controllable bead affinity chromatography (BAC) in a microsystem for biomarker detection, and preparing samples for matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. Cancer marker proteins were captured in the microsystem by BAC with RNA aptamer-immobilized microbeads. The captured proteins were then denatured and released from the microbeads by controlling temperature. The microsystem consists of a microreactor for trapping microbeads and a temperature control unit for thermal treatment of the trapped beads. We used polymethylsilxoane or single crystalline silicon in fabricating two different types of reaction chamber to compare the differences in performance originated from the materials. Carcinoembryonic antigen was concentrated and purified from human serum using the microsystem and detected by MALDI-TOF MS to demonstrate the usefulness of the microsystem. The microsystem simplifies a sample preparation process required for protein analysis and cancer biomarker detection, which will accelerate the process of cancer research.


Assuntos
Biomarcadores/sangue , Cromatografia de Afinidade/instrumentação , Neoplasias/diagnóstico , Temperatura , Sequência de Aminoácidos/genética , Humanos , Dados de Sequência Molecular , Compostos de Organossilício/química , Peptídeos/química , Peptídeos/genética , Polietilenoglicóis/química , Silanos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...