Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 391, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37568098

RESUMO

BACKGROUND: Plant genome information is fundamental to plant research and development. Along with the increase in the number of published plant genomes, there is a need for an efficient system to retrieve various kinds of genome-related information from many plant species across plant kingdoms. Various plant databases have been developed, but no public database covers both genomic and genetic resources over a wide range of plant species. MAIN BODY: We have developed a plant genome portal site, Plant GARDEN (Genome And Resource Database Entry: https://plantgarden.jp/en/index ), to provide diverse information related to plant genomics and genetics in divergent plant species. Elasticsearch is used as a search engine, and cross-keyword search across species is available. Web-based user interfaces (WUI) for PCs and tablet computers were independently developed to make data searches more convenient. Several types of data are stored in Plant GARDEN: reference genomes, gene sequences, PCR-based DNA markers, trait-linked DNA markers identified in genetic studies, SNPs, and in/dels on publicly available sequence read archives (SRAs). The data registered in Plant GARDEN as of March 2023 included 304 assembled genome sequences, 11,331,614 gene sequences, 419,132 DNA markers, 8,225 QTLs, and 5,934 SNP lists (gvcf files). In addition, we have re-annotated all the genes registered in Plant GARDEN by using a functional annotation tool, Hayai-Annotation, to compare the orthologous relationships among genes. CONCLUSION: The aim of Plant GARDEN is to provide plant genome information for use in the fields of plant science as well as for plant-based industries, education, and other relevant areas. Therefore, we have designed a WUI that allows a diverse range of users to access such information in an easy-to-understand manner. Plant GARDEN will eventually include a wide range of plant species for which genome sequences are assembled, and thus the number of plant species in the database will continue to expand. We anticipate that Plant GARDEN will promote the understanding of genomes and gene diversity by facilitating comparisons of the registered sequences.


Assuntos
Bases de Dados Genéticas , Genômica , Marcadores Genéticos , Genoma de Planta/genética , Locos de Características Quantitativas
2.
DNA Res ; 22(2): 171-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25805887

RESUMO

Ipomoea trifida (H. B. K.) G. Don. is the most likely diploid ancestor of the hexaploid sweet potato, I. batatas (L.) Lam. To assist in analysis of the sweet potato genome, de novo whole-genome sequencing was performed with two lines of I. trifida, namely the selfed line Mx23Hm and the highly heterozygous line 0431-1, using the Illumina HiSeq platform. We classified the sequences thus obtained as either 'core candidates' (common to the two lines) or 'line specific'. The total lengths of the assembled sequences of Mx23Hm (ITR_r1.0) was 513 Mb, while that of 0431-1 (ITRk_r1.0) was 712 Mb. Of the assembled sequences, 240 Mb (Mx23Hm) and 353 Mb (0431-1) were classified into core candidate sequences. A total of 62,407 (62.4 Mb) and 109,449 (87.2 Mb) putative genes were identified, respectively, in the genomes of Mx23Hm and 0431-1, of which 11,823 were derived from core sequences of Mx23Hm, while 28,831 were from the core candidate sequence of 0431-1. There were a total of 1,464,173 single-nucleotide polymorphisms and 16,682 copy number variations (CNVs) in the two assembled genomic sequences (under the condition of log2 ratio of >1 and CNV size >1,000 bases). The results presented here are expected to contribute to the progress of genomic and genetic studies of I. trifida, as well as studies of the sweet potato and the genus Ipomoea in general.


Assuntos
Variações do Número de Cópias de DNA , Genes de Plantas , Genoma de Planta , Ipomoea/genética , Sequência de Bases , Genômica , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
3.
Breed Sci ; 64(3): 252-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25320560

RESUMO

To develop a high density linkage map in faba bean, a total of 1,363 FBES (Faba bean expressed sequence tag [EST]-derived simple sequence repeat [SSR]) markers were designed based on 5,090 non-redundant ESTs developed in this study. A total of 109 plants of a 'Nubaria 2' × 'Misr 3' F2 mapping population were used for map construction. Because the parents were not pure homozygous lines, the 109 F2 plants were divided into three subpopulations according to the original F1 plants. Linkage groups (LGs) generated in each subpopulation were integrated by commonly mapped markers. The integrated 'Nubaria 2' × 'Misr 3' map consisted of six LGs, representing a total length of 684.7 cM, with 552 loci. Of the mapped loci, 47% were generated from multi-loci diagnostic (MLD) markers. Alignment of homologous sequence pairs along each linkage group revealed obvious syntenic relationships between LGs in faba bean and the genomes of two model legumes, Lotus japonicus and Medicago truncatula. In a polymorphic analysis with ten Egyptian faba bean varieties, 78.9% (384/487) of the FBES markers showed polymorphisms. Along with the EST-SSR markers, the dense map developed in this study is expected to accelerate marker assisted breeding in faba bean.

4.
DNA Res ; 21(3): 231-41, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24344172

RESUMO

The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.


Assuntos
Dianthus/genética , Genoma de Planta , Sequência de Bases , DNA de Plantas/genética , Bases de Dados Genéticas , Genes de Plantas , Ligação Genética , Dados de Sequência Molecular , Análise de Sequência de DNA
5.
DNA Res ; 20(1): 79-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23248204

RESUMO

The cultivated strawberry (Fragaria × ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA'A'BBB'B' model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers.


Assuntos
Mapeamento Cromossômico , Fragaria/genética , Ligação Genética , Genoma de Planta , Repetições de Microssatélites , Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Etiquetas de Sequências Expressas , Loci Gênicos , Marcadores Genéticos , Polimorfismo Genético , Análise de Sequência de DNA , Transcriptoma
6.
BMC Plant Biol ; 12: 80, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22672714

RESUMO

BACKGROUND: Peanut (Arachis hypogaea) is an autogamous allotetraploid legume (2n = 4x = 40) that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers. RESULTS: The use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2%) of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4 cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs) for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed. CONCLUSIONS: In silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (http://marker.kazusa.or.jp).


Assuntos
Arachis/genética , Elementos de DNA Transponíveis , Repetições de Microssatélites , Polimorfismo Genético , Mapeamento Cromossômico , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Locos de Características Quantitativas
7.
Mol Breed ; 30(1): 125-138, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22707912

RESUMO

Large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed in peanut (Arachis hypogaea L.) to obtain more informative genetic markers. A total of 10,102 potential non-redundant EST sequences, including 3,445 contigs and 6,657 singletons, were generated from cDNA libraries of the gynophore, roots, leaves and seedlings. A total of 3,187 primer pairs were designed on flanking regions of SSRs, some of which allowed one and two base mismatches. Among the 3,187 markers generated, 2,540 (80%) were trinucleotide repeats, 302 (9%) were dinucleotide repeats, and 345 (11%) were tetranucleotide repeats. Pre-polymorphic analyses of 24 Arachis accessions were performed using 10% polyacrylamide gels. A total of 1,571 EST-SSR markers showing clear polymorphisms were selected for further polymorphic analysis with a Fluoro-fragment Analyzer. The 16 Arachis accessions examined included cultivated peanut varieties as well as diploid species with the A or B genome. Altogether 1,281 (81.5%) of the 1,571 markers were polymorphic among the 16 accessions, and 366 (23.3%) were polymorphic among the 12 cultivated varieties. Diversity analysis was performed and the genotypes of all 16 Arachis accessions showed similarity coefficients ranging from 0.37 to 0.97. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9604-8) contains supplementary material, which is available to authorized users.

8.
Microbes Environ ; 27(3): 306-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22452844

RESUMO

Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.


Assuntos
Bradyrhizobium/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Proteínas de Bactérias/genética , Composição de Bases , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/fisiologia , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , RNA não Traduzido/genética , Microbiologia do Solo , Simbiose , Sintenia
9.
DNA Res ; 18(4): 221-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21669962

RESUMO

Raphanus sativus (2n = 2x = 18) is a widely cultivated member of the family Brassicaceae, for which genomic resources are available only to a limited extent in comparison to many other members of the family. To promote more genetic and genomic studies and to enhance breeding programmes of R. sativus, we have prepared genetic resources such as complementary DNA libraries, expressed sequences tags (ESTs), simple sequence repeat (SSR) markers and a genetic linkage map. A total of 26 606 ESTs have been collected from seedlings, roots, leaves, and flowers, and clustered into 10 381 unigenes. Similarities were observed between the expression patterns of transcripts from R. sativus and those from representative members of the genera Arabidopsis and Brassica, indicating their functional relatedness. The EST sequence data were used to design 3800 SSR markers and consequently 630 polymorphic SSR loci and 213 reported marker loci have been mapped onto nine linkage groups, covering 1129.2 cM with an average distance of 1.3 cM between loci. Comparison of the mapped EST-SSR marker positions in R. sativus with the genome sequence of A. thaliana indicated that the Brassicaceae members have evolved from a common ancestor. It appears that genomic fragments corresponding to those of A. thaliana have been doubled and tripled in R. sativus. The genetic map developed here is expected to provide a standard map for the genetics, genomics, and molecular breeding of R. sativus as well as of related species. The resources are available at http://marker.kazusa.or.jp/Daikon.


Assuntos
Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Ligação Genética , Genômica , Repetições de Microssatélites/genética , Raphanus/genética , Genoma de Planta , Motivos de Nucleotídeos
10.
DNA Res ; 18(1): 65-76, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21149391

RESUMO

The whole genome of Jatropha curcas was sequenced, using a combination of the conventional Sanger method and new-generation multiplex sequencing methods. Total length of the non-redundant sequences thus obtained was 285 858 490 bp consisting of 120 586 contigs and 29 831 singlets. They accounted for ~95% of the gene-containing regions with the average G + C content was 34.3%. A total of 40 929 complete and partial structures of protein encoding genes have been deduced. Comparison with genes of other plant species indicated that 1529 (4%) of the putative protein-encoding genes are specific to the Euphorbiaceae family. A high degree of microsynteny was observed with the genome of castor bean and, to a lesser extent, with those of soybean and Arabidopsis thaliana. In parallel with genome sequencing, cDNAs derived from leaf and callus tissues were subjected to pyrosequencing, and a total of 21 225 unigene data have been generated. Polymorphism analysis using microsatellite markers developed from the genomic sequence data obtained was performed with 12 J. curcas lines collected from various parts of the world to estimate their genetic diversity. The genomic sequence and accompanying information presented here are expected to serve as valuable resources for the acceleration of fundamental and applied research with J. curcas, especially in the fields of environment-related research such as biofuel production. Further information on the genomic sequences and DNA markers is available at http://www.kazusa.or.jp/jatropha/.


Assuntos
Genoma de Planta , Jatropha/genética , Proteínas de Plantas/genética , Análise de Sequência de DNA
11.
DNA Res ; 17(6): 381-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21044984

RESUMO

Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between 'Micro-Tom' and either 'Ailsa Craig' or 'M82'. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Cruzamento , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos , Variação Genética , Íntrons
12.
DNA Res ; 17(1): 37-50, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20047946

RESUMO

We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3,311,395 bp) and six plasmids, designated as pAB510a (1,455,109 bp), pAB510b (723,779 bp), pAB510c (681,723 bp), pAB510d (628,837 bp), pAB510e (537,299 bp), and pAB510f (261,596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N(2) fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C(4)-dicarboxylate during its symbiotic relationship with the host plant.


Assuntos
Agricultura , Azospirillum/genética , Genoma Bacteriano/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Azospirillum/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Transporte Biológico/genética , Contagem de Colônia Microbiana , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Ilhas Genômicas/genética , Dados de Sequência Molecular , Família Multigênica , Fixação de Nitrogênio/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA Bacteriano/genética , Origem de Replicação/genética , Replicon/genética , Análise de Sequência de DNA
13.
Nucleic Acids Res ; 38(Database issue): D379-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19880388

RESUMO

CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genoma Bacteriano , Synechocystis/genética , Acesso à Informação , Biologia Computacional/tendências , Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Internet , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Software
14.
DNA Res ; 15(5): 297-308, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18658183

RESUMO

Rhizobia are nitrogen-fixing soil bacteria that establish endosymbiosis with some leguminous plants. The completion of several rhizobial genome sequences provides opportunities for genome-wide functional studies of the physiological roles of many rhizobial genes. In order to carry out genome-wide phenotypic screenings, we have constructed a large mutant library of the nitrogen-fixing symbiotic bacterium, Mesorhizobium loti, by transposon mutagenesis. Transposon insertion mutants were generated using the signature-tagged mutagenesis (STM) technique and a total of 29,330 independent mutants were obtained. Along with the collection of transposon mutants, we have determined the transposon insertion sites for 7892 clones, and confirmed insertions in 3680 non-redundant M. loti genes (50.5% of the total number of M. loti genes). Transposon insertions were randomly distributed throughout the M. loti genome without any bias toward G+C contents of insertion target sites and transposon plasmids used for the mutagenesis. We also show the utility of STM mutants by examining the specificity of signature tags and test screenings for growth- and nodulation-deficient mutants. This defined mutant library allows for genome-wide forward- and reverse-genetic functional studies of M. loti and will serve as an invaluable resource for researchers to further our understanding of rhizobial biology.


Assuntos
Alphaproteobacteria/genética , Elementos de DNA Transponíveis , Biblioteca Gênica , Genoma Bacteriano , Genômica , Mutagênese Insercional , Plasmídeos/genética , Rhizobiaceae/genética
15.
DNA Res ; 15(4): 227-39, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18511435

RESUMO

The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10,951 complete and 19,848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.


Assuntos
Genoma de Planta , Lotus/genética , Mapeamento Cromossômico , DNA de Plantas , Duplicação Gênica , Genes de Plantas , Hibridização in Situ Fluorescente , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Sintenia
16.
DNA Res ; 15(1): 13-23, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18192278

RESUMO

Global viewing of protein-protein interactions (PPIs) is a useful way to assign biological roles to large numbers of proteins predicted by complete genome sequence. Here, we systematically analyzed PPIs in the nitrogen-fixing soil bacterium Mesorhizobium loti using a modified high-throughput yeast two-hybrid system. The aims of this study are primarily on the providing functional clues to M. loti proteins that are relevant to symbiotic nitrogen fixation and conserved in other rhizobium species, especially proteins with regulatory functions and unannotated proteins. By the screening of 1542 genes as bait, 3121 independent interactions involving 1804 proteins (24% of the total protein coding genes) were identified and each interaction was evaluated using an interaction generality (IG) measure and the general features of the interacting partners. Most PPIs detected in this study are novel interactions revealing potential functional relationships between genes for symbiotic nitrogen fixation and signal transduction. Furthermore, we have predicted the putative functions of unannotated proteins through their interactions with known proteins. The results described here represent new insight into protein network of M. loti and provide useful experimental clues to elucidate the biological function of rhizobial genes that can not be assigned directly from their genomic sequence.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Fixação de Nitrogênio , Mapeamento de Interação de Proteínas , Alphaproteobacteria/genética , Transdução de Sinais
17.
DNA Res ; 14(5): 207-16, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18000013

RESUMO

Protein-protein interactions (PPIs) play crucial roles in protein function for a variety of biological processes. Data from large-scale PPI screening has contributed to understanding the function of a large number of predicted genes from fully sequenced genomes. Here, we report the systematic identification of protein interactions for the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Using a modified high-throughput yeast two-hybrid assay, we screened 1825 genes selected primarily from (i) genes of two-component signal transducers of Synechocystis, (ii) Synechocystis genes whose homologues are conserved in the genome of Arabidopsis thaliana, and (iii) genes of unknown function on the Synechocystis chromosome. A total of 3236 independent two-hybrid interactions involving 1920 proteins (52% of the total protein coding genes) were identified and each interaction was evaluated using an interaction generality (IG) measure, as well as the general features of interacting partners. The interaction data obtained in this study should provide new insights and novel strategies for functional analyses of genes in Synechocystis, and, additionally, genes in other cyanobacteria and plant genes of cyanobacterial origin.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mapeamento de Interação de Proteínas , Synechocystis/genética , Synechocystis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sequência Conservada , Primers do DNA/genética , DNA Bacteriano/genética , Genoma Bacteriano , Genoma de Planta , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Transdução de Sinais/genética , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido
18.
DNA Res ; 14(6): 247-56, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18192279

RESUMO

The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5,842,795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Microcystis/genética , Composição de Bases , Sequência de Bases , Dados de Sequência Molecular , Família Multigênica/genética , Estrutura Terciária de Proteína , Análise de Sequência de DNA
19.
DNA Res ; 12(5): 301-64, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16769692

RESUMO

With the aim of establishing the basic knowledge and resources needed for applied genetics, we investigated the genome structure of red clover Trifolium pratense L. by a combination of cytological, genomic and genetic approaches. The deduced genome size was approximately 440 Mb, as estimated by measuring the nuclear DNA content by flow cytometry. Seven chromosomes could be distinguished by microscopic observation of DAPI stained prometaphase chromosomes and fluorescence in situ hybridization using 28S and 5S rDNA probes and bacterial artificial chromosome probes containing microsatellite markers with known positions on a genetic linkage map. The average GC content of the genomes of chloroplast, mitochondrion and nucleus were shown to be 33.8, 42.9 and 34.2%, respectively, by the analysis of 1.4 Mb of random genomic sequences. A total of 26,356 expressed sequence tags (ESTs) that were grouped into 9339 non-redundant sequences were collected, and 78% of the ESTs showed sequence similarity to registered genes, mainly of Arabidopsis thaliana and rice. To facilitate basic and applied genetics in red clover, we generated a high-density genetic linkage map with gene-associated microsatellite markers. A total of 7159 primer pairs were designed to amplify simple sequence repeats (SSRs) identified in four different types of libraries. Based on sequence similarity, 82% of the SSRs were likely to be associated with genes. Polymorphism was examined using two parent plants, HR and R130, and 10 F(1) progeny by agarose gel electrophoresis, followed by genotyping for the primer pairs showing polymorphisms using 188 F(1) plants from the mapping population. The selected 1305 microsatellite markers as well as the previously developed 167 restriction fragment length polymorphism markers were subjected to linkage analysis. A total of 1434 loci detected by 1399 markers were successfully mapped onto seven linkage groups totaling 868.7 cM in length; 405 loci (28%) were bi-parental, 611 (43%) were specific to HR and 418 (29%) were specific to R130. Each genetic linkage group was linked to a corresponding chromosome by FISH analysis using seven microsatellite markers specific to each of the linkage groups as probes. Transferability of the developed microsatellite markers to other germplasms was confirmed by testing 268 selected markers on 88 red clover germplasms. Macrosynteny at the segmental level was observed between the genomes of red clover and two model legumes, Lotus japonicus and Medicago truncatula, strongly suggesting that the genome information for the model legumes is transferable to red clover for genetic investigations and experimental breeding.


Assuntos
Genoma de Planta , Trifolium/genética , Composição de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Etiquetas de Sequências Expressas , Frequência do Gene , Ligação Genética , Hibridização in Situ Fluorescente , Lotus/genética , Medicago truncatula/genética , Repetições de Microssatélites , Polimorfismo de Fragmento de Restrição
20.
DNA Res ; 10(5): 221-8, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-14686584

RESUMO

The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 consists of a single chromosome and several plasmids of different sizes, and the nucleotide sequences of the chromosome and three small plasmids (5.2 kb, 2.4 kb, and 2.3 kb) have already been sequenced. We newly determined the nucleotide sequences of four large plasmids, which have been identified in our laboratory (pSYSM:120 kb, pSYSX:106 kb, pSYSA:103 kb, and pSYSG:44 kb). Computer-aided analysis was performed to explore the genetic information carried by these plasmids. A total of 397 potential protein-encoding genes were predicted, but little information was obtained about the functional relationship of plasmids to host cell, as a large portion of the predicted genes (77%) were of unknown function. The occurrence of the potential genes on plasmids was divergent, and parA was the only gene common to all four large plasmids. The distribution data of a Cyanobacterium-specific sequence (HIP1: 5'-GCGATCGC-3') suggested that respective plasmids could have originated from different cyanobacterial strains.


Assuntos
Cianobactérias/genética , Plasmídeos , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...