Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 6243, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674666

RESUMO

Light-driven nano/micromotors are attracting much attention, not only as molecular devices but also as components of bioinspired robots. In nature, several pathogens such as Listeria use actin polymerisation machinery for their propulsion. Despite the development of various motors, it remains challenging to mimic natural systems to create artificial motors propelled by fibre formation. Herein, we report the propulsion of giant liposomes driven by light-induced peptide nanofibre growth on their surface. Peptide-DNA conjugates connected by a photocleavage unit were asymmetrically introduced onto phase-separated giant liposomes. Ultraviolet (UV) light irradiation cleaved the conjugates and released peptide units, which self-assembled into nanofibres, driving the translational movement of the liposomes. The velocity of the liposomes reflected the rates of the photocleavage reaction and subsequent fibre formation of the peptide-DNA conjugates. These results showed that chemical design of the light-induced peptide nanofibre formation is a useful approach to fabricating bioinspired motors with controllable motility.


Assuntos
Lipossomos/química , Movimento/efeitos da radiação , Nanofibras/química , Peptídeos , Raios Ultravioleta , Biomimética , DNA , Lipossomos/efeitos da radiação , Fotólise
2.
Chem Pharm Bull (Tokyo) ; 65(12): 1161-1166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29199220

RESUMO

A synthetic platform for chlorpromazine (CPZ) oligomers, which could be generated via photo-reaction of CPZ, is essential to promote their biological and structural studies. In this paper, the first synthetic platform for CPZ oligomers is described. A photo-irradiation experiment of CPZ to confirm whether the structure of the CPZ dimer generated by the photo-irradiation was identical to that prepared by our synthetic method is also reported.


Assuntos
Clorpromazina/química , Clorpromazina/síntese química , Cromatografia Líquida de Alta Pressão , Dimerização , Isomerismo , Espectrometria de Massas , Fotólise/efeitos da radiação , Polimerização/efeitos da radiação , Raios Ultravioleta
3.
Org Biomol Chem ; 15(25): 5289-5297, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28509930

RESUMO

Because of the relevance of d-serine (d-Ser) to schizophrenia, inhibitors of d-amino acid oxidase (DAO), which catalyzes degradation of d-Ser in the presence of flavin adenine dinucleotide (FAD), are expected to be anti-schizophrenia therapeutics. In this study, binding pockets of DAO to its inhibitor 4-bromo-3-nitrobenzoic acid were searched by combining in silico docking simulation and labeling experiments employing an N-sulfanylethylanilide-based labeling technology that we have developed. The results clearly demonstrated that there are two binding pockets: one is shared with d-Ser and FAD, and the other is an unexpected cleft between the subunits of a DAO dimer. These findings will provide insight to aid the development of new DAO inhibitors. In addition, it was also proved that our labeling technology could be applicable to elucidate the binding pockets of proteins.


Assuntos
D-Aminoácido Oxidase/antagonistas & inibidores , D-Aminoácido Oxidase/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Coloração e Rotulagem , Compostos de Enxofre/química , Sítios de Ligação/efeitos dos fármacos , D-Aminoácido Oxidase/metabolismo , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular
4.
J Pept Sci ; 23(7-8): 505-513, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28105728

RESUMO

Elucidation of biological functions of peptides and proteins is essential for understanding peptide/protein-related biological events and developing drugs. Caged peptides and proteins that release a parent active peptide/protein by photo-irradiation have successfully been employed to elucidate the functions. Whereas the usual caged peptide/protein enables conversion of an inactive form to an active form (OFF-to-ON conversion) by photo-induced deprotection, photo-triggered main chain cleavage is reported to be applicable to ON-to-OFF conversion. These peptides and proteins are photo-responsive; however, if peptides and proteins could respond to other stimuli such as disease-related environment or enzymes, their range of application should be widened. To convert the photo-responsive peptide/protein into other stimulus-responsive peptide/protein, quite laborious de novo design and synthesis of the stimulus-responsive unit are required. In this context, we designed a stimulus-responsive peptide-bond-cleaving residue (Spr) in which the stimuli available for the main chain cleavage vary according to the choice of protecting groups on the residue. In this review, design and synthesis of Spr are introduced, and challenges to apply Spr to other fields to enable, for example, functional control, localization control, delivery of cargos, labeling of a protein of interest in living cells, and identification of target proteins of bioactive ligands are discussed. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Peptídeos/química , Proteínas/química , Animais , Humanos , Peptídeos/metabolismo , Proteínas/metabolismo
5.
Org Biomol Chem ; 14(26): 6244-51, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264675

RESUMO

The ligand-dependent incorporation of a reporter molecule (e.g., fluorescence dye or biotin) onto a endogenous target protein has emerged as an important strategy for elucidating protein function using various affinity-based labelling reagents consisting of reporter, ligand and reactive units. Conventional labelling reagents generally use a weakly activated reactive unit, which can result in the non-specific labelling of proteins in a ligand-independent manner. In this context, the activation of a labelling reagent through a targeted protein-ligand interaction could potentially overcome the problems associated with conventional affinity-based labelling reagents. We hypothesized that this type of protein-ligand-interaction-mediated activation could be accomplished using N-sulfanylethylanilide (SEAlide) as the reactive unit in the labelling reagent. Electrophilically unreactive amide-type SEAlide can be activated by its conversion to the corresponding active thioester in the presence of a phosphate salt, which can act as an acid-base catalyst. It has been suggested that protein surfaces consisting of hydrophilic residues such as amino, carboxyl and imidazole groups could function as acid-base catalysts. We therefore envisioned that a SEAlide-based labelling reagent (SEAL) bearing SEAlide as a reactive unit could be activated through the binding of the SEAL with a target protein. Several SEALs were readily prepared in this study using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase protocols. These SEAL systems were subsequently applied to the ligand-dependent labelling of human carbonic anhydrase (hCA) and cyclooxyganese 1. Although we have not yet obtained any direct evidence for the target protein-mediated activation of the SEAlide unit, our results for the reaction of these SEALs with hCA1 or butylamine indirectly support our hypothesis. The SEALs reported in this study represent valuable new entries to the field of affinity-based labelling reagents and are expected to show great utility in protein labelling.


Assuntos
Marcadores de Afinidade/química , Anilidas/química , Anidrase Carbônica I/química , Glutationa Transferase/química , Ovalbumina/química , Fosfopiruvato Hidratase/química , Compostos de Sulfidrila/química , Anidrase Carbônica I/metabolismo , Glutationa Transferase/metabolismo , Humanos , Ligantes , Estrutura Molecular , Fosfopiruvato Hidratase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...