Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 4(7): 100586, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942024

RESUMO

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.


Assuntos
Agaricales , Genoma Fúngico , Genoma Fúngico/genética , Agaricales/genética , Filogenia , Elementos de DNA Transponíveis/genética , Evolução Molecular , Transferência Genética Horizontal , Plantas/microbiologia , Plantas/genética
2.
Mycorrhiza ; 34(1-2): 69-84, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441669

RESUMO

Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.


Assuntos
Basidiomycota , Micorrizas , Sesquiterpenos , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Filogenia , Simbiose/fisiologia , Sesquiterpenos/metabolismo
3.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375883

RESUMO

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Assuntos
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raízes de Plantas/metabolismo , Simbiose/genética , Laccaria/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Monoterpenos/metabolismo
4.
New Phytol ; 242(4): 1676-1690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148573

RESUMO

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.


Assuntos
Florestas , Fungos , Microbiologia do Solo , Transcriptoma , Fungos/genética , Fungos/fisiologia , Transcriptoma/genética , Micorrizas/fisiologia , Micorrizas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Solo/química , Ecossistema , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Plant Physiol Biochem ; 205: 108158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948976

RESUMO

Tuber indicum is the most economically important member of Tuber, with the highest production and widest distribution in China. However, the overexploitation of immature ascocarps not only has driven wild resources of the species toward extinction, but also has caused enconomic losses and a decline in the reputation of T.indicum quality. In this study, stage-specific metabolites of T. indicum in relation to nutritional quality and the mechanism of their accumulations were explored by transcriptome and metabolome analysis at five harvest times, representing four maturation stages. A total of 663 compounds were identified in T. indicum ascocarps by a widely targeted metabolomic approach. Lipid compounds are the most prominent metabolites (18%) in our samples and also are higher accumulation at the immature stage than at mature stage, representing 30.16% differential accumulated metabolites in this stage. Levels of some of the amino acids, such as S-(methyl) glutathione, S-adenosylmethionine, which are known truffle aroma precursors, were increased at the mature stage. The gene expression level related to the biosynthesis of volatile organic compounds were verified by qPCR. This study contributes to the preliminary understanding of metabolites variations in T. indicum ascocarps during maturity for quality evaluation and truffle biology.


Assuntos
Ascomicetos , Metaboloma , Transcriptoma , Metaboloma/fisiologia , Transcriptoma/genética , Ascomicetos/genética , Ascomicetos/metabolismo
6.
Plant J ; 116(6): 1784-1803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715981

RESUMO

Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.


Assuntos
Micorrizas , Ozônio , Populus , Micorrizas/fisiologia , Simbiose , Sinais (Psicologia) , Raízes de Plantas/metabolismo , Ecossistema , Populus/genética
7.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811946

RESUMO

The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.


Assuntos
Basidiomycota , Micorrizas , Micorrizas/genética , Simbiose/genética , Basidiomycota/genética , Raízes de Plantas , Açúcares
8.
New Phytol ; 238(6): 2561-2577, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807327

RESUMO

Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.


Assuntos
Laccaria , Micorrizas , Populus , Micorrizas/fisiologia , Árvores/genética , Árvores/metabolismo , Raízes de Plantas/metabolismo , Metilação de DNA/genética , DNA , Populus/metabolismo , Laccaria/genética
9.
New Phytol ; 238(2): 845-858, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702619

RESUMO

Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.


Assuntos
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Quitina/metabolismo , Árvores/metabolismo , Florestas , Genômica , Solo
10.
Methods Mol Biol ; 2605: 79-102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520390

RESUMO

Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism's genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.


Assuntos
Fungos , Genoma , DNA Fúngico/genética , DNA Fúngico/metabolismo , Peso Molecular , Fungos/genética , Fungos/metabolismo , Mapeamento Cromossômico
11.
Environ Microbiol ; 24(10): 4607-4622, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818672

RESUMO

Fungivory of mycorrhizal hyphae has a significant impact on fungal fitness and, by extension, on nutrient transfer between fungi and host plants in natural ecosystems. Mycorrhizal fungi have therefore evolved an arsenal of chemical compounds that are hypothesized to protect the hyphal tissues from being eaten, such as the protease inhibitors mycocypins. The genome of the ectomycorrhizal fungus Laccaria bicolor has an unusually high number of mycocypin-encoding genes. We have characterized the evolution of this class of proteins, identified those induced by symbiosis with a host plant and characterized the biochemical properties of two upregulated L. bicolor mycocypins. More than half of L. bicolor mycocypin-encoding genes are differentially expressed during symbiosis or fruiting body formation. We show that two L. bicolor mycocypins that are strongly induced during symbiosis are cysteine protease inhibitors and exhibit similar but distinct localization in fungal tissues at different developmental stages and during interaction with a host plant. Moreover, we show that these L. bicolor mycocypins have toxic and feeding deterrent effect on nematodes and collembolans, respectively. Therefore, L. bicolor mycocypins may be part of a mechanism by which this species deters grazing by different members of the soil food web.


Assuntos
Micorrizas , Inibidores de Cisteína Proteinase/metabolismo , Ecossistema , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Laccaria , Micorrizas/genética , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Solo , Simbiose/genética
12.
Front Plant Sci ; 13: 880600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599894

RESUMO

Orchid seed germination in nature is an extremely complex physiological and ecological process involving seed development and mutualistic interactions with a restricted range of compatible mycorrhizal fungi. The impact of the fungal species' partner on the orchids' transcriptomic and metabolic response is still unknown. In this study, we performed a comparative transcriptomic analysis between symbiotic and asymbiotic germination at three developmental stages based on two distinct fungi (Tulasnella sp. and Serendipita sp.) inoculated to the same host plant, Dendrobium officinale. Differentially expressed genes (DEGs) encoding important structural proteins of the host plant cell wall were identified, such as epidermis-specific secreted glycoprotein, proline-rich receptor-like protein, and leucine-rich repeat (LRR) extensin-like protein. These DEGs were significantly upregulated in the symbiotic germination stages and especially in the protocorm stage (stage 3) and seedling stage (stage 4). Differentially expressed carbohydrate-active enzymes (CAZymes) in symbiotic fungal mycelium were observed, they represented 66 out of the 266 and 99 out of the 270 CAZymes annotated in Tulasnella sp. and Serendipita sp., respectively. These genes were speculated to be involved in the reduction of plant immune response, successful colonization by fungi, or recognition of mycorrhizal fungi during symbiotic germination of orchid seed. Our study provides important data to further explore the molecular mechanism of symbiotic germination and orchid mycorrhiza and contribute to a better understanding of orchid seed biology.

13.
J Exp Bot ; 73(12): 4046-4064, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325111

RESUMO

Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.


Assuntos
Regulação da Expressão Gênica de Plantas , Populus , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
14.
J Fungi (Basel) ; 8(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35330313

RESUMO

The Ganoderma species in Polyporales are ecologically and economically relevant wood decayers used in traditional medicine, but their genomic traits are still poorly documented. In the present study, we carried out a phylogenomic and comparative genomic analyses to better understand the genetic blueprint of this fungal lineage. We investigated seven Ganoderma genomes, including three new genomes, G. australe, G. leucocontextum, and G. lingzhi. The size of the newly sequenced genomes ranged from 60.34 to 84.27 Mb and they encoded 15,007 to 20,460 genes. A total of 58 species, including 40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, one endophyte fungus, and two pathogens in Basidiomycota, were used for phylogenomic analyses based on 143 single-copy genes. It confirmed that Ganoderma species belong to the core polyporoid clade. Comparing to the other selected species, the genomes of the Ganoderma species encoded a larger set of genes involved in terpene metabolism and coding for secreted proteins (CAZymes, lipases, proteases and SSPs). Of note, G. australe has the largest genome size with no obvious genome wide duplication, but showed transposable elements (TEs) expansion and the largest set of terpene gene clusters, suggesting a high ability to produce terpenoids for medicinal treatment. G. australe also encoded the largest set of proteins containing domains for cytochrome P450s, heterokaryon incompatibility and major facilitator families. Besides, the size of G. australe secretome is the largest, including CAZymes (AA9, GH18, A01A), proteases G01, and lipases GGGX, which may enhance the catabolism of cell wall carbohydrates, proteins, and fats during hosts colonization. The current genomic resource will be used to develop further biotechnology and medicinal applications, together with ecological studies of the Ganoderma species.

15.
New Phytol ; 233(5): 2294-2309, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861049

RESUMO

The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.


Assuntos
Agaricales , Micorrizas , Agaricales/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Hábitos , Micorrizas/genética , Filogenia , Simbiose/genética
16.
New Phytol ; 233(3): 1383-1400, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767630

RESUMO

We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.


Assuntos
Basidiomycota , Micorrizas , Basidiomycota/genética , Evolução Biológica , Micorrizas/genética , Filogenia , Simbiose/genética
17.
New Phytol ; 233(6): 2534-2547, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942023

RESUMO

In ectomycorrhiza, root penetration and colonization of the intercellular space by symbiotic hyphae is thought to rely on the mechanical force that results from hyphal tip growth, enhanced by the activity of secreted cell-wall-degrading enzymes. Here, we characterize the biochemical properties of the symbiosis-induced polygalacturonase LbGH28A from the ectomycorrhizal fungus Laccaria bicolor. The transcriptional regulation of LbGH28A was measured by quantitative PCR (qPCR). The biological relevance of LbGH28A was confirmed by generating RNA interference (RNAi)-silenced LbGH28A mutants. We localized the LbGH28A protein by immunofluorescence confocal and immunogold cytochemical microscopy in poplar ectomycorrhizal roots. Quantitative PCR confirmed the induced expression of LbGH28A during ectomycorrhiza formation. Laccaria bicolor RNAi mutants have a lower ability to establish ectomycorrhiza, confirming the key role of this enzyme in symbiosis. The purified recombinant LbGH28A has its highest activity towards pectin and polygalacturonic acid. In situ localization of LbGH28A indicates that this endopolygalacturonase is located in both fungal and plant cell walls at the symbiotic hyphal front. These findings suggest that the symbiosis-induced pectinase LbGH28A is involved in the Hartig net formation and is an important determinant for successful symbiotic colonization.


Assuntos
Basidiomycota , Laccaria , Micorrizas , Laccaria/genética , Micorrizas/fisiologia , Raízes de Plantas/fisiologia , Poligalacturonase/genética , Poligalacturonase/metabolismo , Simbiose/fisiologia
18.
Microorganisms ; 9(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946213

RESUMO

Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients. Eventually, basidiocarps develop to assure last stages of sexual reproduction. The aim of this study is to understand how an EcM fungus uses its gene set to support functional differentiation and development of specialized morphological structures. We examined the transcriptomes of Laccaria bicolor under a series of experimental setups, including the growth with Populus tremula x alba at different developmental stages, basidiocarps and free-living mycelium, under various conditions of N, P and C supply. In particular, N supply induced global transcriptional changes, whereas responses to P supply seemed to be independent from it. Symbiosis development with poplar is characterized by transcriptional waves. Basidiocarp development shares transcriptional signatures with other basidiomycetes. Overlaps in transcriptional responses of L. bicolor hyphae to a host plant and N/C supply next to co-regulation of genes in basidiocarps and mature mycorrhiza were detected. Few genes are induced in a single condition only, but functional and morphological differentiation rather involves fine tuning of larger gene sets. Overall, this transcriptomic atlas builds a reference to study the function and stability of EcM symbiosis in distinct conditions using L. bicolor as a model and indicates both similarities and differences with other ectomycorrhizal fungi, allowing researchers to distinguish conserved processes such as basidiocarp development from nutrient homeostasis.

19.
Nat Commun ; 12(1): 7227, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893598

RESUMO

The roots of Arabidopsis thaliana host diverse fungal communities that affect plant health and disease states. Here, we sequence the genomes of 41 fungal isolates representative of the A. thaliana root mycobiota for comparative analysis with other 79 plant-associated fungi. Our analyses indicate that root mycobiota members evolved from ancestors with diverse lifestyles and retain large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identify a set of 84 gene families associated with endophytism, including genes encoding PCWDEs acting on xylan (family GH10) and cellulose (family AA9). Transcripts encoding these enzymes are also part of a conserved transcriptional program activated by phylogenetically-distant mycobiota members upon host contact. Recolonization experiments with individual fungi indicate that strains with detrimental effects in mono-association with the host colonize roots more aggressively than those with beneficial activities, and dominate in natural root samples. Furthermore, we show that the pectin-degrading enzyme family PL1_7 links aggressiveness of endophytic colonization to plant health.


Assuntos
Arabidopsis/microbiologia , Endófitos/genética , Fungos/genética , Micobioma/genética , Raízes de Plantas/microbiologia , Parede Celular/metabolismo , Celulose/metabolismo , Fungos/isolamento & purificação , Genoma , Genoma Fúngico , Genômica , Filogenia , Simbiose , Xilanos/metabolismo
20.
Environ Microbiol ; 23(11): 6536-6556, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472169

RESUMO

Ectomycorrhizal (ECM) fungi associated with plants constitute one of the most successful symbiotic interactions in forest ecosystems. ECM support trophic exchanges with host plants and are important factors for the survival and stress resilience of trees. However, ECM clades often harbour morpho-species and cryptic lineages, with weak morphological differentiation. How this relates to intraspecific genome variability and ecological functioning is poorly known. Here, we analysed 16 European isolates of the ascomycete Cenococcum geophilum, an extremely ubiquitous forest symbiotic fungus with no known sexual or asexual spore-forming structures but with a massively enlarged genome. We carried out whole-genome sequencing to identify single-nucleotide polymorphisms. We found no geographic structure at the European scale but divergent lineages within sampling sites. Evidence for recombination was restricted to specific cryptic lineages. Lineage differentiation was supported by extensive copy-number variation. Finally, we confirmed heterothallism with a single MAT1 idiomorph per genome. Synteny analyses of the MAT1 locus revealed substantial rearrangements and a pseudogene of the opposite MAT1 idiomorph. Our study provides the first evidence for substantial genome-wide structural variation, lineage-specific recombination and low continent-wide genetic differentiation in C. geophilum. Our study provides a foundation for targeted analyses of intra-specific functional variation in this major symbiosis.


Assuntos
Ascomicetos , Micorrizas , Ecossistema , Florestas , Estruturas Genéticas , Variação Genética , Micorrizas/genética , Filogenia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...