Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 10854, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940861

RESUMO

As the first magnetic random access memories are finding their way onto the market, an important issue remains to be solved: the current density required to write magnetic bits becomes prohibitively high as bit dimensions are reduced. Recently, spin-orbit torques and the spin-Hall effect in particular have attracted significant interest, as they enable magnetization reversal without high current densities running through the tunnel barrier. For perpendicularly magnetized layers, however, the technological implementation of the spin-Hall effect is hampered by the necessity of an in-plane magnetic field for deterministic switching. Here we interface a thin ferromagnetic layer with an anti-ferromagnetic material. An in-plane exchange bias is created and shown to enable field-free S HE-driven magnetization reversal of a perpendicularly magnetized Pt/Co/IrMn structure. Aside from the potential technological implications, our experiment provides additional insight into the local spin structure at the ferromagnetic/anti-ferromagnetic interface.

2.
Nanotechnology ; 25(49): 495201, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25409909

RESUMO

We report multi-channel electron transport in nano-contacts fabricated using focused electron beam induced deposited (FEBID) cobalt and focused ion beam induced deposited (FIBID) tungsten. Anomalous Andreev reflection (AR) effect is observed to which the conventional Blonder-Tinkham-Klapwijk (BTK) fit cannot be applied. In specific, we have observed multiple number of shoulders near the AR peak, whose origin is unknown in literature. We explain this effect based on a simple model that takes into account the material properties of the FIBID grown W superconductor, as well as the specific interface properties that are an outcome of using FEBID/FIBID as a fabrication technique. We show that numerical calculations using the BTK approximation based on the consideration of multiple channels generate similar shoulders as we observed in the AR experiments. Electrical measurements and x-ray photoemission spectroscopy carried out on FIBID W deposits puts additional evidence towards multi-channel current transport occuring at the interface of the nanocontacts.

3.
Nanotechnology ; 22(2): 025302, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21135470

RESUMO

We systematically study the effect of oxygen content on the magneto-transport and microstructure of Fe:O:C nanowires deposited by focused-electron-beam-induced (FEBID) deposition. The Fe/O ratio can be varied with an Fe content varying between ∼ 50 and 80 at.% with overall low C content (≈16 ± 3 at.%) by adding H(2)O during the deposition while keeping the beam parameters constant as measured by energy dispersive x-ray (EDX) spectroscopy. The room-temperature magnetic properties for deposits with an Fe content of 66-71 at.% are investigated using the magneto-optical Kerr effect (MOKE) and electric magneto-transport measurements. The nanostructure of the deposits is investigated through cross-sectional high-resolution transmission electron microscopy (HRTEM) imaging, allowing us to link the observed magneto-resistance and resistivity to the transport mechanism in the deposits. These results demonstrate that functional magnetic nanostructures can be created, paving the way for new magnetic or even spintronics devices.

4.
Phys Rev Lett ; 103(14): 146601, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905590

RESUMO

By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

5.
Phys Rev Lett ; 102(1): 016602, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257223

RESUMO

We report a correlation between the spin polarization of the tunneling electrons and the magnetic moment of amorphous CoFeB alloys. Such a correlation is surprising since the spin polarization of the tunneling electrons involves s-like electrons close to the Fermi level (E_{F}), while the magnetic moment mainly arises due to all the d electrons below E_{F}. We show that probing the s and d bands individually provides clear and crucial evidence for such a correlation to exist through s-d hybridization, and demonstrate the tunability of the electronic and magnetic properties of CoFeB alloys.

6.
Phys Rev Lett ; 100(5): 057205, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18352421

RESUMO

We provide compelling evidence to establish that, contrary to one's elementary guess, the tunneling spin polarization (TSP) of amorphous CoFeB is larger than that of fcc CoFeB. First-principles atomic and electronic structure calculations reveal striking agreement between the measured TSP and the predicted s-electron spin polarization. Given the disordered structure of the ternary alloy, not only do these results strongly endorse our communal understanding of tunneling through AlO(x), but they also portray the key concepts that demand primary consideration in such complex systems.

7.
Phys Rev Lett ; 96(23): 237201, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16803395

RESUMO

The structural and magnetic properties of Mn prepared on single crystalline face-centered-tetragonal (fct) Co(001) were investigated. Mn grows coherently up to at least 50 monolayers (ML) and adopts a metastable expanded fct(001) phase [c/a = 1.055(5)]. This new fct-Mn phase was recently predicted theoretically by Hafner and Spisák. Studies of magnetic Mn/Co interface exchange interactions prove the room temperature antiferromagnetic state for thicknesses above 2.5 ML. The magnetic anisotropy of the thin Mn is high enough to induce a significant exchange anisotropy for Mn thicknesses as low as 6 ML. The potential of fct-Mn to become a novel model system for systematic studies on the exchange interactions at antiferromagnet/ferromagnet interfaces is discussed.

8.
Phys Rev Lett ; 93(17): 177205, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15525122

RESUMO

Ultrahigh-quality thin fct-Co films grown on Cu(001) have been investigated by 59Co nuclear magnetic resonance. The influence of the spin-dependent electron scattering at the interfaces is observed for at least four Co atomic layers from the interface with monolayer resolution. An oscillatory effect on the Co hyperfine field with a period of several monolayers is measured, corresponding to the oscillating conduction electron polarization. The observation is exclusively possible in this system due to its very narrow resonance lines, corresponding to a virtually perfect Co structure.

9.
Phys Rev Lett ; 88(22): 227201, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12059451

RESUMO

A novel, all-optical method to excite and detect spin waves in magnetic materials is presented. By exploiting the temperature dependence of the magnetic anisotropy, an ultrashort laser pulse is efficiently converted in a picosecond "anisotropy field" pulse that triggers a coherent precession of the magnetization. Recording the temporal evolution of the precessing spins by a time-delayed probe-pulse provides a quantitative method to study locally the magnetic anisotropy, as well as switching and damping phenomena in micromagnetic structures. Applications to nickel and permalloy ( Ni80Fe20) films are discussed, particularly showing the possibility to explore standing spin waves in thin films.

10.
Phys Rev Lett ; 88(10): 107201, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11909383

RESUMO

Utilizing Co/Al(2)O(3)/Co magnetic tunnel junctions with Co electrodes of different crystalline phases, a clear relationship between electrode crystal structure and junction transport properties is presented. For junctions with one fcc(111) textured and one polycrystalline (polyphase and polydirectional) Co electrode, a strong asymmetry is observed in the magnetotransport properties, while when both electrodes are polycrystalline the magnetotransport is essentially symmetric. These observations are successfully explained within a model based on ballistic tunneling between the calculated band structures (density of states) of fcc-Co and hcp-Co.

11.
Phys Rev Lett ; 86(6): 1066-9, 2001 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11178011

RESUMO

Large zero-bias resistance anomalies as well as a collapse of magnetoresistance were observed in Co/Al2O3/Co magnetic tunnel junctions with thin Cr interfacial layers. The tunnel magnetoresistance decays exponentially with nominal Cr interlayer thickness with a length scale of approximately 1 A more than twice as fast as for Cu interlayers. The strong suppression of magnetoresistance, as well as the zero-bias anomalies, can be understood by considering a strong spin-dependent modification of the density of states at Co/Cr interfaces. The role of the interfacial density of states is shown by the use of specially engineered structures. Similar effects are predicted and observed in junctions with Ru interfacial layers.

12.
Phys Rev Lett ; 84(8): 1812-5, 2000 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21923210

RESUMO

The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...