Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 18(4): 607-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22402688

RESUMO

Direct replay of the experience of a user in a virtual environment is difficult for others to watch due to unnatural camera motions. We present methods for replaying and summarizing these egocentric experiences that effectively communicate the user's observations while reducing unwanted camera movements. Our approach summarizes the viewpoint path as a concise sequence of viewpoints that cover the same parts of the scene. The core of our approach is a novel content-dependent metric that can be used to identify similarities between viewpoints. This enables viewpoints to be grouped by similar contextual view information and provides a means to generate novel viewpoints that can encapsulate a series of views. These resulting encapsulated viewpoints are used to synthesize new camera paths that convey the content of the original viewer's experience. Projecting the initial movement of the user back on the scene can be used to convey the details of their observations, and the extracted viewpoints can serve as bookmarks for control or analysis. Finally we present performance analysis along with two forms of validation to test whether the extracted viewpoints are representative of the viewer's original observations and to test for the overall effectiveness of the presented replay methods.


Assuntos
Gráficos por Computador , Interface Usuário-Computador , Humanos , Movimento (Física) , Movimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-25285327

RESUMO

Virtual Reality environments have the ability to present users with rich visual representations of simulated environments. However, means to interact with these types of illusions are generally unnatural in the sense that they do not match the methods humans use to grasp and move objects in the physical world. We demonstrate a system that enables users to interact with virtual objects with natural body movements by combining visual information, kinesthetics and biofeedback from electromyograms (EMG). Our method allows virtual objects to be grasped, moved and dropped through muscle exertion classification based on physical world masses. We show that users can consistently reproduce these calibrated exertions, allowing them to interface with objects in a novel way.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24172709

RESUMO

Externally observing the experience of a participant in a virtual environment is generally accomplished by viewing an egocentric perspective. Monitoring this view can often be difficult for others to watch due to unwanted camera motions that appear unnatural and unmotivated. We present a novel method for reducing the unnaturalness of these camera motions by minimizing camera movement while maintaining the context of the participant's observations. For each time-step, we compare the parts of the scene viewed by the virtual participant to the parts of the scene viewed by the camera. Based on the similarity of these two viewpoints we next determine how the camera should be adjusted. We present two means of adjustment, one which continuously adjusts the camera and a second which attempts to stop camera movement when possible. Empirical evaluation shows that our method can produce paths that have substantially shorter travel distances, are easier to watch and maintain the original observations of the participant's virtual experience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...