Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Plast ; 2015: 804385, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257961

RESUMO

Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.


Assuntos
Aprendizagem por Associação/fisiologia , Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizagem , Masculino , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Semântica , Adulto Jovem
2.
Neural Netw ; 70: 61-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218350

RESUMO

Standard methods for the analysis of functional MRI data strongly rely on prior implicit and explicit hypotheses made to simplify the analysis. In this work the attention is focused on two such commonly accepted hypotheses: (i) the hemodynamic response function (HRF) to be searched in the BOLD signal can be described by a specific parametric model e.g., double-gamma; (ii) the effect of stimuli on the signal is taken to be linearly additive. While these assumptions have been empirically proven to generate high sensitivity for statistical methods, they also limit the identification of relevant voxels to what is already postulated in the signal, thus not allowing the discovery of unknown correlates in the data due to the presence of unexpected hemodynamics. This paper tries to overcome these limitations by proposing a method wherein the HRF is learned directly from data rather than induced from its basic form assumed in advance. This approach produces a set of voxel-wise models of HRF and, as a result, relevant voxels are filterable according to the accuracy of their prediction in a machine learning framework. This approach is instantiated using a temporal architecture based on the paradigm of Reservoir Computing wherein a Liquid State Machine is combined with a decoding Feed-Forward Neural Network. This splits the modeling into two parts: first a representation of the complex temporal reactivity of the hemodynamic response is determined by a universal global "reservoir" which is essentially temporal; second an interpretation of the encoded representation is determined by a standard feed-forward neural network, which is trained by the data. Thus the reservoir models the temporal state of information during and following temporal stimuli in a feed-back system, while the neural network "translates" this data to fit the specific HRF response as given, e.g. by BOLD signal measurements in fMRI. An empirical analysis on synthetic datasets shows that the learning process can be robust both to noise and to the varying shape of the underlying HRF. A similar investigation on real fMRI datasets provides evidence that BOLD predictability allows for discrimination between relevant and irrelevant voxels for a given set of stimuli.


Assuntos
Hemodinâmica/fisiologia , Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Simulação por Computador , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Cadeias de Markov , Modelos Estatísticos , Oxigênio/sangue , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...