Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1675: 467-480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052208

RESUMO

The spatial distribution of genes in the nucleus emerges as an important factor in gene regulation and epigenetics. The position of loci relative to each other, to nuclear landmarks such as the nucleolus and chromocenters, as well as to chromatin proteins is therefore highly interesting. With fluorescent in situ hybridization (FISH) specific DNA sequences can be stained and antibodies allow the detection of specific proteins. Here, we present two protocols that preserve the 3D structure of nuclei. With whole-mount FISH, specific sequences can be stained in intact tissues and, secondly, a combined immunolabeling and FISH protocol on acrylamide-embedded nuclei makes it possible to stain DNA sequences and proteins simultaneously.


Assuntos
Arabidopsis/citologia , Núcleo Celular/química , Hibridização in Situ Fluorescente/métodos , Arabidopsis/química , Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Microscopia Confocal/métodos , Preservação Biológica
2.
Proc Natl Acad Sci U S A ; 112(28): 8656-60, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124146

RESUMO

Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Transporte/fisiologia , Centrômero , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Genes de Plantas , Histonas/metabolismo , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 112(21): E2836-44, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964332

RESUMO

The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Transdução de Sinal Luminoso , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos da radiação , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Metilação de DNA , Inativação Gênica , Genes de Plantas , Heterocromatina/genética , Heterocromatina/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular , Transdução de Sinal Luminoso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Geneticamente Modificadas , RNA Polimerase II/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
PLoS One ; 8(6): e65055, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750228

RESUMO

Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP and LYK3 mediate signalling upon perception of bacterial lipo-chitooligosaccharides, termed Nod factors, during the establishment of mutualism with nitrogen-fixing rhizobia. However, little is still known about the exact activation and signalling mechanisms of MtNFP and MtLYK3. We aimed at investigating putative molecular interactions of MtNFP and MtLYK3 produced in Nicotiana benthamiana. Surprisingly, heterologous co-production of these proteins resulted in an induction of defence-like responses, which included defence-related gene expression, accumulation of phenolic compounds, and cell death. Similar defence-like responses were observed upon production of AtCERK1 in N. benthamiana leaves. Production of either MtNFP or MtLYK3 alone or their co-production with other unrelated receptor(-like) kinases did not induce cell death in N. benthamiana, indicating that a functional interaction between these LysM receptor-like kinases is required for triggering this response. Importantly, structure-function studies revealed that the MtNFP intracellular region, specific features of the MtLYK3 intracellular region (including several putative phosphorylation sites), and MtLYK3 and AtCERK1 kinase activity were indispensable for cell death induction, thereby mimicking the structural requirements of nodulation or chitin-induced signalling. The observed similarity of N. benthamiana response to MtNFP and MtLYK3 co-production and AtCERK1 production suggests the existence of parallels between Nod factor-induced and chitin-induced signalling mediated by the respective LysM receptor(-like) kinases. Notably, the conserved structural requirements for MtNFP and MtLYK3 biological activity in M. truncatula (nodulation) and in N. benthamiana (cell death induction) indicates the relevance of the latter system for studies on these, and potentially other symbiotic LysM receptor-like kinases.


Assuntos
Medicago truncatula/enzimologia , Nicotiana/genética , Nicotiana/imunologia , Proteínas Quinases/biossíntese , Proteínas Quinases/metabolismo , Morte Celular , Quitina/metabolismo , Espaço Intracelular/enzimologia , Lipopolissacarídeos/metabolismo , Medicago truncatula/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Ligação Proteica , Proteínas Quinases/genética , Transdução de Sinais , Nicotiana/citologia , Nicotiana/fisiologia
5.
Proc Natl Acad Sci U S A ; 108(50): 20219-24, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123962

RESUMO

Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Tamanho do Núcleo Celular , Cromatina/metabolismo , Sementes/citologia , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Cotilédone/citologia , Análise Citogenética , Dessecação , Dormência de Plantas
6.
Curr Biol ; 19(5): 408-13, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19249207

RESUMO

Exposure of Arabidopsis plants to high temperature (28 degrees C) results in a dramatic change in plant development. Responses to high temperature include rapid extension of plant axes, leaf hyponasty, and early flowering. These phenotypes parallel plant responses to the threat of vegetational shade and have been shown to involve the hormone auxin. In this work, we demonstrate that high temperature-induced architectural adaptations are mediated through the bHLH transcriptional regulator PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Roles for PIF4 have previously been established in both light and gibberellin (GA) signaling, through interactions with phytochromes and DELLA proteins, respectively. Mutants deficient in PIF4 do not display elongation responses or leaf hyponasty upon transfer to high temperature. High temperature-mediated induction of the auxin-responsive gene IAA29 is also abolished in these plants. An early flowering response to high temperature is maintained in pif4 mutants, suggesting that architectural and flowering responses operate via separate signaling pathways. The role of PIF4 in temperature signaling does not, however, appear to operate through interaction with either phytochrome or DELLA proteins, suggesting the existence of a novel regulatory mechanism. We conclude that PIF4 is an important component of plant high temperature signaling and integrates multiple environmental cues during plant development.


Assuntos
Adaptação Biológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Temperatura Alta , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice , Fitocromo/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...