Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 56, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654330

RESUMO

BACKGROUND: Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp. RESULTS: Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%. CONCLUSION: This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.

2.
Biotechnol Biofuels Bioprod ; 15(1): 147, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578086

RESUMO

Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.

3.
Biotechnol Biofuels Bioprod ; 15(1): 49, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568899

RESUMO

BACKGROUND: Enzymatic hydrolysis of lignocellulosic biomass into platform sugars can be enhanced by the addition of accessory enzymes, such as xylanases. Lignin from steam pretreated biomasses is known to inhibit enzymes by non-productively binding enzymes and limiting access to cellulose. The effect of enzymatically isolated lignin on the hydrolysis of xylan by four glycoside hydrolase (GH) family 11 xylanases was studied. Two xylanases from the mesophilic Trichoderma reesei, TrXyn1, TrXyn2, and two forms of a thermostable metagenomic xylanase Xyl40 were compared. RESULTS: Lignin isolated from steam pretreated spruce decreased the hydrolysis yields of xylan for all the xylanases at 40 and 50 °C. At elevated hydrolysis temperature of 50 °C, the least thermostable xylanase TrXyn1 was most inhibited by lignin and the most thermostable xylanase, the catalytic domain (CD) of Xyl40, was least inhibited by lignin. Enzyme activity and binding to lignin were studied after incubation of the xylanases with lignin for up to 24 h at 40 °C. All the studied xylanases bound to lignin, but the thermostable xylanases retained 22-39% of activity on the lignin surface for 24 h, whereas the mesophilic T. reesei xylanases become inactive. Removing of N-glycans from the catalytic domain of Xyl40 increased lignin inhibition in hydrolysis of xylan when compared to the glycosylated form. By comparing the 3D structures of these xylanases, features contributing to the increased thermal stability of Xyl40 were identified. CONCLUSIONS: High thermal stability of xylanases Xyl40 and Xyl40-CD enabled the enzymes to remain partially active on the lignin surface. N-glycosylation of the catalytic domain of Xyl40 increased the lignin tolerance of the enzyme. Thermostability of Xyl40 was most likely contributed by a disulphide bond and salt bridge in the N-terminal and α-helix regions.

4.
Protein Sci ; 31(2): 371-383, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761460

RESUMO

Xylonolactonase Cc XylC from Caulobacter crescentus catalyzes the hydrolysis of the intramolecular ester bond of d-xylonolactone. We have determined crystal structures of Cc XylC in complex with d-xylonolactone isomer analogues d-xylopyranose and (r)-(+)-4-hydroxy-2-pyrrolidinone at high resolution. Cc XylC has a 6-bladed ß-propeller architecture, which contains a central open channel having the active site at one end. According to our previous native mass spectrometry studies, Cc XylC is able to specifically bind Fe2+ . The crystal structures, presented here, revealed an active site bound metal ion with an octahedral binding geometry. The side chains of three amino acid residues, Glu18, Asn146, and Asp196, which participate in binding of metal ion are located in the same plane. The solved complex structures allowed suggesting a reaction mechanism for intramolecular ester bond hydrolysis in which the major contribution for catalysis arises from the carbonyl oxygen coordination of the xylonolactone substrate to the Fe2+ . The structure of Cc XylC was compared with eight other ester hydrolases of the ß-propeller hydrolase family. The previously published crystal structures of other ß-propeller hydrolases contain either Ca2+ , Mg2+ , or Zn2+ and show clear similarities in ligand and metal ion binding geometries to that of Cc XylC. It would be interesting to reinvestigate the metal binding specificity of these enzymes and clarify whether they are also able to use Fe2+ as a catalytic metal. This could further expand our understanding of utilization of Fe2+ not only in oxidative enzymes but also in hydrolases.


Assuntos
Hidrolases de Éster Carboxílico , Caulobacter crescentus , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Caulobacter crescentus/enzimologia , Cristalografia por Raios X , Hidrolases , Hidrólise , Ferro , Lactonas/química , Lactonas/metabolismo
5.
Biochemistry ; 60(41): 3046-3049, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34633186

RESUMO

Caulobacter crescentus xylonolactonase (Cc XylC, EC 3.1.1.68) catalyzes an intramolecular ester bond hydrolysis over a nonenzymatic acid/base catalysis. Cc XylC is a member of the SMP30 protein family, whose members have previously been reported to be active in the presence of bivalent metal ions, such as Ca2+, Zn2+, and Mg2+. By native mass spectrometry, we studied the binding of several bivalent metal ions to Cc XylC and observed that it binds only one of them, namely, the Fe2+ cation, specifically and with a high affinity (Kd = 0.5 µM), pointing out that Cc XylC is a mononuclear iron protein. We propose that bivalent metal cations also promote the reaction nonenzymatically by stabilizing a short-lived bicyclic intermediate on the lactone isomerization reaction. An analysis of the reaction kinetics showed that Cc XylC complexed with Fe2+ can speed up the hydrolysis of d-xylono-1,4-lactone by 100-fold and that of d-glucono-1,5-lactone by 10-fold as compared to the nonenzymatic reaction. To our knowledge, this is the first discovery of a nonheme mononuclear iron-binding enzyme that catalyzes an ester bond hydrolysis reaction.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Caulobacter crescentus/enzimologia , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Gluconatos/química , Hidrólise , Ferro/química , Ferro/metabolismo , Cinética , Lactonas/química , Espectrometria de Massas/métodos , Ligação Proteica
6.
Appl Microbiol Biotechnol ; 105(16-17): 6215-6228, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34410440

RESUMO

Deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) are acetaldehyde-dependent, Class I aldolases catalyzing in nature a reversible aldol reaction between an acetaldehyde donor (C2 compound) and glyceraldehyde-3-phosphate acceptor (C3 compound, C3P) to generate deoxyribose-5-phosphate (C5 compound, DR5P). DERA enzymes have been found to accept also other types of aldehydes as their donor, and in particular as acceptor molecules. Consequently, DERA enzymes can be applied in C-C bond formation reactions to produce novel compounds, thus offering a versatile biocatalytic alternative for synthesis. DERA enzymes, found in all kingdoms of life, share a common TIM barrel fold despite the low overall sequence identity. The catalytic mechanism is well-studied and involves formation of a covalent enzyme-substrate intermediate. A number of protein engineering studies to optimize substrate specificity, enzyme efficiency, and stability of DERA aldolases have been published. These have employed various engineering strategies including structure-based design, directed evolution, and recently also machine learning-guided protein engineering. For application purposes, enzyme immobilization and usage of whole cell catalysis are preferred methods as they improve the overall performance of the biocatalytic processes, including often also the stability of the enzyme. Besides single-step enzymatic reactions, DERA aldolases have also been applied in multi-enzyme cascade reactions both in vitro and in vivo. The DERA-based applications range from synthesis of commodity chemicals and flavours to more complicated and high-value pharmaceutical compounds. KEY POINTS: • DERA aldolases are versatile biocatalysts able to make new C-C bonds. • Synthetic utility of DERAs has been improved by protein engineering approaches. • Computational methods are expected to speed up the future DERA engineering efforts.


Assuntos
Aldeído Liases , Ribosemonofosfatos , Aldeído Liases/genética , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase , Especificidade por Substrato
7.
J Appl Glycosci (1999) ; 68(1): 19-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354542

RESUMO

Cellobiohydrolase I from Trichoderma reesei ( Tr Cel7A) is one of the best-studied cellulases, exhibiting high activity towards crystalline cellulose. Tryptophan residues at subsites -7 and -4 (Trp40 and Trp38 respectively) are located at the entrance and middle of the tunnel-like active site of Tr Cel7A, and are conserved among the GH family 7 cellobiohydrolases. Trp40 of Tr Cel7A is important for the recruitment of cellulose chain ends on the substrate surface, but the role of Trp38 is less clear. Comparison of the effects of W38A and W40A mutations on the binding energies of sugar units at the two subsites indicated that the contribution of Trp38 to the binding was greater than that of Trp40. In addition, the smooth gradient of binding energy was broken in W38A mutant. To clarify the importance of Trp38, the activities of Tr Cel7A WT and W38A towards crystalline cellulose and amorphous cellulose were compared. W38A was more active than WT towards amorphous cellulose, whereas its activity towards crystalline cellulose was only one-tenth of that of WT. To quantify the effect of mutation at subsite -4, we measured kinetic parameters of Tr Cel7A WT, W40A and W38A towards cello-oligosaccharides. All combinations of enzymes and substrates showed substrate inhibition, and comparison of the inhibition constants showed that the Trp38 residue increases the velocity of substrate intake ( k on for forming productive complex) from the minus side of the subsites. These results indicate a key role of Trp38 residue in processively loading the reducing-end of cellulose chain into the catalytic tunnel.

8.
Appl Microbiol Biotechnol ; 104(24): 10515-10529, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33147349

RESUMO

In this work, deoxyribose-5-phosphate aldolase (Ec DERA, EC 4.1.2.4) from Escherichia coli was chosen as the protein engineering target for improving the substrate preference towards smaller, non-phosphorylated aldehyde donor substrates, in particular towards acetaldehyde. The initial broad set of mutations was directed to 24 amino acid positions in the active site or in the close vicinity, based on the 3D complex structure of the E. coli DERA wild-type aldolase. The specific activity of the DERA variants containing one to three amino acid mutations was characterised using three different substrates. A novel machine learning (ML) model utilising Gaussian processes and feature learning was applied for the 3rd mutagenesis round to predict new beneficial mutant combinations. This led to the most clear-cut (two- to threefold) improvement in acetaldehyde (C2) addition capability with the concomitant abolishment of the activity towards the natural donor molecule glyceraldehyde-3-phosphate (C3P) as well as the non-phosphorylated equivalent (C3). The Ec DERA variants were also tested on aldol reaction utilising formaldehyde (C1) as the donor. Ec DERA wild-type was shown to be able to carry out this reaction, and furthermore, some of the improved variants on acetaldehyde addition reaction turned out to have also improved activity on formaldehyde. KEY POINTS: • DERA aldolases are promiscuous enzymes. • Synthetic utility of DERA aldolase was improved by protein engineering approaches. • Machine learning methods aid the protein engineering of DERA.


Assuntos
Escherichia coli , Frutose-Bifosfato Aldolase , Aldeído Liases/genética , Aldeído Liases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/genética , Aprendizado de Máquina , Engenharia de Proteínas , Especificidade por Substrato
9.
ACS Omega ; 4(8): 13447-13453, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460473

RESUMO

Bioconjugation through oxime or hydrazone formation is a versatile strategy for covalent labeling of biomolecules in vitro and in vivo. In this work, a mass spectrometry-based method was developed for the bioconjugation of small carbonyl compounds (CCs) with an aminoalkylhydrazine to form stable hydrazone conjugates that are readily detectable with electrospray ionization mass spectrometry (ESI-MS). Out of all hydrazine reagents tested, 2-(dimethylamino)ethylhydrazine (DMAEH) was selected for further analysis due to the fastest reaction rates observed. A thorough study of the reaction kinetics between structurally varied short-chain CCs and DMAEH was performed with the second-order reaction rate constants spanning in the range of 0.23-208 M-1 s-1. In general, small aldehydes reacted faster than the corresponding ketones. Moreover, a successful reaction monitoring of a deoxyribose-5-phosphate aldolase-catalyzed reversible retro-aldol cleavage of deoxyribose was demonstrated. Thus, the developed method shows potential also for ESI-MS-based enzyme kinetics studies.

10.
AMB Express ; 9(1): 124, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31385056

RESUMO

Xylanases are in important class of industrial enzymes that are essential for the complete hydrolysis of lignocellulosic biomass into fermentable sugars. In the present study, we report the cloning of novel xylanases with interesting properties from compost metagenomics libraries. Controlled composting of lignocellulosic materials was used to enrich the microbial population in lignocellulolytic organisms. DNA extracted from the compost samples was used to construct metagenomics libraries, which were screened for xylanase activity. In total, 40 clones exhibiting xylanase activity were identified and the thermostability of the discovered xylanases was assayed directly from the library clones. Five genes, including one belonging to the more rare family GH8, were selected for subcloning and the enzymes were expressed in recombinant form in E. coli. Preliminary characterization of the metagenome-derived xylanases revealed interesting properties of the novel enzymes, such as high thermostability and specific activity, and differences in hydrolysis profiles. One enzyme was found to perform better than a standard Trichoderma reesei xylanase in the hydrolysis of lignocellulose at elevated temperatures.

11.
AMB Express ; 9(1): 48, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30972503

RESUMO

The oxidative D-xylose pathway, i.e. Dahms pathway, can be utilised to produce from cheap biomass raw material useful chemical intermediates. In vitro metabolic pathways offer a fast way to study the rate-limiting steps and find the most suitable enzymes for each reaction. We have constructed here in vitro multi-enzyme cascades leading from D-xylose or D-xylonolactone to ethylene glycol, glycolic acid and lactic acid, and use simple spectrophotometric assays for the read-out of the efficiency of these pathways. Based on our earlier results, we focussed particularly on the less studied xylonolactone ring opening (hydrolysis) reaction. The bacterial Caulobacter crescentus lactonase (Cc XylC), was shown to be a metal-dependent enzyme clearly improving the formation of D-xylonic acid at pH range from 6 to 8. The following dehydration reaction by the ILVD/EDD family D-xylonate dehydratase is a rate-limiting step in the pathway, and an effort was made to screen for novel enolase family D-xylonate dehydratases, however, no suitable replacing enzymes were found for this reaction. Concerning the oxidation of glycolaldehyde to glycolic acid, several enzyme candidates were also tested. Both Escherichia coli aldehyde dehydrogenase (Ec AldA) and Azospirillum brasilense α-ketoglutarate semialdehyde dehydrogenase (Ab AraE) proved to be suitable enzymes for this reaction.

12.
Sci Rep ; 8(1): 865, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339766

RESUMO

The Ilv/ED dehydratase protein family includes dihydroxy acid-, gluconate-, 6-phosphogluconate- and pentonate dehydratases. The members of this family are involved in various biosynthetic and carbohydrate metabolic pathways. Here, we describe the first crystal structure of D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) at 2.7 Å resolution and compare it with other available enzyme structures from the IlvD/EDD protein family. The quaternary structure of CcXyDHT is a tetramer, and each monomer is composed of two domains in which the N-terminal domain forms a binding site for a [2Fe-2S] cluster and a Mg2+ ion. The active site is located at the monomer-monomer interface and contains residues from both the N-terminal recognition helix and the C-terminus of the dimeric counterpart. The active site also contains a conserved Ser490, which probably acts as a base in catalysis. Importantly, the cysteines that participate in the binding and formation of the [2Fe-2S] cluster are not all conserved within the Ilv/ED dehydratase family, which suggests that some members of the IlvD/EDD family may bind different types of [Fe-S] clusters.


Assuntos
Hidroliases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Caulobacter crescentus/enzimologia , Cristalografia por Raios X , Hidroliases/metabolismo , Magnésio/química , Magnésio/metabolismo , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
13.
ACS Chem Biol ; 12(7): 1919-1927, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28574691

RESUMO

We present a novel crystal structure of the IlvD/EDD family enzyme, l-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii (RlArDHT, EC 4.2.1.25), which catalyzes the conversion of l-arabinonate to 2-dehydro-3-deoxy-l-arabinonate. The enzyme is a tetramer consisting of a dimer of dimers, where each monomer is composed of two domains. The active site contains a catalytically important [2Fe-2S] cluster and Mg2+ ion and is buried between two domains, and also at the dimer interface. The active site Lys129 was found to be carbamylated. Ser480 and Thr482 were shown to be essential residues for catalysis, and the S480A mutant structure showed an unexpected open conformation in which the active site was more accessible for the substrate. This structure showed the partial binding of l-arabinonate, which allowed us to suggest that the alkoxide ion form of the Ser480 side chain functions as a base and the [2Fe-2S] cluster functions as a Lewis acid in the elimination reaction.


Assuntos
Hidroliases/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Rhizobium , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Pentosefosfatos/química , Fosforilação , Rhizobium/enzimologia
14.
Mol Biotechnol ; 58(12): 821-831, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27714589

RESUMO

Two novel GH3 family thermostable ß-glucosidases from the filamentous fungus Chaetomium atrobrunneum (CEL3a and CEL3b) were expressed in Trichoderma reesei, purified by two-step ion exchange chromatography, and characterized. Both enzymes were active over a wide range of pH as compared to Neurospora crassa ß-glucosidase GH3-3, which was also expressed in T. reesei and purified. The optimum temperature of both C. atrobrunneum enzymes was around 60 °C at pH 5, and both enzymes had better thermal and pH stability and higher resistance to metallic compounds and to glucose inhibition than GH3-3. They also showed higher activity against oligosaccharides composed of glucose units and linked with ß-1,4-glycosidic bonds and moreover, had higher affinity for cellotriose over cellobiose. In hydrolysis tests against Avicel cellulose and steam-exploded sugarcane bagasse, performed at 45 °C, particularly the CEL3a enzyme performed similarly to N. crassa GH3-3 ß-glucosidase. Taking into account the thermal stability of the C. atrobrunneum ß-glucosidases, they both represent promising alternatives as enzyme mixture components for improved cellulose saccharification at elevated temperatures.


Assuntos
Chaetomium/enzimologia , Trichoderma/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/química , Temperatura , Trichoderma/metabolismo , beta-Glucosidase/química
15.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 8): 604-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27487924

RESUMO

L-Arabinonate dehydratase (EC 4.2.1.25) and D-xylonate dehydratase (EC 4.2.1.82) are two enzymes that are involved in a nonphosphorylative oxidation pathway of pentose sugars. L-Arabinonate dehydratase converts L-arabinonate into 2-dehydro-3-deoxy-L-arabinonate, and D-xylonate dehydratase catalyzes the dehydration of D-xylonate to 2-dehydro-3-deoxy-D-xylonate. L-Arabinonate and D-xylonate dehydratases belong to the IlvD/EDD family, together with 6-phosphogluconate dehydratases and dihydroxyacid dehydratases. No crystal structure of any L-arabinonate or D-xylonate dehydratase is available in the PDB. In this study, recombinant L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii (RlArDHT) and D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) were heterologously expressed in Escherichia coli and purified by the use of affinity chromatography followed by gel-filtration chromatography. The purified proteins were crystallized using the hanging-drop vapour-diffusion method at 293 K. Crystals of RlArDHT that diffracted to 2.40 Šresolution were obtained using sodium formate as a precipitating agent. They belonged to space group P21, with unit-cell parameters a = 106.07, b = 208.61, c = 147.09 Å, ß = 90.43°. Eight RlArDHT molecules (two tetramers) in the asymmetric unit give a VM value of 3.2 Å(3) Da(-1) and a solvent content of 62%. Crystals of CcXyDHT that diffracted to 2.66 Šresolution were obtained using sodium formate and polyethylene glycol 3350. They belonged to space group C2, with unit-cell parameters a = 270.42, b = 236.13, c = 65.17 Å, ß = 97.38°. Four CcXyDHT molecules (a tetramer) in the asymmetric unit give a VM value of 4.0 Å(3) Da(-1) and a solvent content of 69%.


Assuntos
Proteínas de Bactérias/química , Caulobacter crescentus/química , Hidroliases/química , Plasmídeos/química , Rhizobium leguminosarum/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Formiatos/química , Expressão Gênica , Hidroliases/genética , Hidroliases/metabolismo , Plasmídeos/metabolismo , Polietilenoglicóis/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizobium leguminosarum/enzimologia
16.
Appl Microbiol Biotechnol ; 100(17): 7549-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27102126

RESUMO

We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Hidroliases/genética , Hidroliases/metabolismo , Rhizobium leguminosarum/enzimologia , Sequência de Aminoácidos , Arabinose/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconatos/metabolismo , Alinhamento de Sequência , Xilose/metabolismo
17.
Appl Microbiol Biotechnol ; 100(2): 673-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26428243

RESUMO

We describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus. The Cc AAOR exists in solution as a dimer, belongs to the Gfo/Idh/MocA family and shows homology with the glucose-fructose oxidoreductase from Zymomonas mobilis. However, unlike other known members of this protein family, Cc AAOR is specific for aldose sugars and can be in the same catalytic cycle both oxidise and reduce a panel of monosaccharides at the C1 position, producing in each case the corresponding aldonolactone and alditol, respectively. Cc AAOR contains a tightly-bound nicotinamide cofactor, which is regenerated in this oxidation-reduction cycle. The highest oxidation activity was detected on D-glucose but significant activity was also observed on D-xylose, L-arabinose and D-galactose, revealing that both hexose and pentose sugars are accepted as substrates by Cc AAOR. The configuration at the C2 and C3 positions of the saccharides was shown to be especially important for the substrate binding. Interestingly, besides monosaccharides, Cc AAOR can also oxidise a range of 1,4-linked oligosaccharides having aldose unit at the reducing end, such as lactose, malto- and cello-oligosaccharides as well as xylotetraose. (1)H NMR used to monitor the oxidation and reduction reaction simultaneously, demonstrated that although D-glucose has the highest affinity and is also oxidised most efficiently by Cc AAOR, the reduction of D-glucose is clearly not as efficient. For the overall reaction catalysed by Cc AAOR, the L-arabinose, D-xylose and D-galactose were the most potent substrates.


Assuntos
Aldeído Redutase/metabolismo , Caulobacter crescentus/enzimologia , Monossacarídeos/metabolismo , Biocatálise , Caulobacter crescentus/metabolismo , Glucose/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredutases/metabolismo , Homologia de Sequência de Aminoácidos , Xilose/metabolismo , Zymomonas/enzimologia , Zymomonas/metabolismo
18.
Crit Rev Biotechnol ; 36(5): 904-16, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26177333

RESUMO

This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.


Assuntos
Açúcares Ácidos , Biotecnologia , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo
19.
Biochem J ; 472(3): 297-307, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26438878

RESUMO

Aldose-aldose oxidoreductase (Cc AAOR) is a recently characterized enzyme from the bacterial strain Caulobacter crescentus CB15 belonging to the glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family. Cc AAOR catalyses the oxidation and reduction of a panel of aldose monosaccharides using a tightly bound NADP(H) cofactor that is regenerated in the catalytic cycle. Furthermore, Cc AAOR can also oxidize 1,4-linked oligosaccharides. In the present study, we present novel crystal structures of the dimeric Cc AAOR in complex with the cofactor and glycerol, D-xylose, D-glucose, maltotriose and D-sorbitol determined to resolutions of 2.0, 1.8, 1.7, 1.9 and 1.8 Å (1 Å=0.1 nm), respectively. These complex structures allowed for a detailed analysis of the ligand-binding interactions. The structures showed that the C1 carbon of a substrate, which is either reduced or oxidized, is close to the reactive C4 carbon of the nicotinamide ring of NADP(H). In addition, the O1 hydroxy group of the substrate, which is either protonated or deprotonated, is unexpectedly close to both Lys(104) and Tyr(189), which may both act as a proton donor or acceptor. This led us to hypothesize that this intriguing feature could be beneficial for Cc AAOR to catalyse the reduction of a linear form of a monosaccharide substrate and the oxidation of a pyranose form of the same substrate in a reaction cycle, during which the bound cofactor is regenerated.


Assuntos
Caulobacter crescentus/enzimologia , Oxirredutases/química , Proteínas de Bactérias , Catálise , Cristalografia por Raios X , Oxirredução , Relação Estrutura-Atividade
20.
Appl Microbiol Biotechnol ; 99(22): 9439-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26264136

RESUMO

An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.


Assuntos
Aldeído Redutase/isolamento & purificação , Aldeído Redutase/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Açúcares Ácidos/metabolismo , Xilitol/metabolismo , Xilose/metabolismo , Aldeído Redutase/genética , Caulobacter crescentus/enzimologia , Caulobacter crescentus/genética , Gluconatos/metabolismo , Glucose/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Saccharomyces cerevisiae/metabolismo , Sorbitol/metabolismo , Zymomonas/enzimologia , Zymomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...