Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 13(12): 2200-2214, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37845194

RESUMO

Epidemiological studies have shown that abnormalities of glucose metabolism are involved in leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD). However, the physiological significance of this association is unclear. In the present study, we investigated the effect of LRRK2 on high-fat diet (HFD)-induced glucose intolerance using Lrrk2-knockout (KO) mice. We found for the first time that HFD-fed KO mice display improved glucose tolerance compared with their wild-type (WT) counterparts. In addition, high serum insulin and leptin, as well as low serum adiponectin resulting from HFD in WT mice were improved in KO mice. Using western blotting, we found that Lrrk2 is highly expressed in adipose tissues compared with other insulin-related tissues that are thought to be important in glucose tolerance, including skeletal muscle, liver, and pancreas. Lrrk2 expression and phosphorylation of its kinase substrates Rab8a and Rab10 were significantly elevated after HFD treatment in WT mice. In cell culture experiments, treatment with a LRRK2 kinase inhibitor stimulated insulin-dependent membrane translocation of glucose transporter 4 (Glut4) and glucose uptake in mouse 3T3-L1 adipocytes. We conclude that increased LRRK2 kinase activity in adipose tissue exacerbates glucose tolerance by suppressing Rab8- and Rab10-mediated GLUT4 membrane translocation.


Assuntos
Adipócitos , Tecido Adiposo , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Transporte Biológico , Glucose/metabolismo , Insulina/metabolismo , Camundongos Knockout
2.
Pharmacol Rep ; 74(4): 745-751, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35672575

RESUMO

BACKGROUND: XE991 (10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone) is reportedly a potent and selective Kv7 (KCNQ) channel inhibitor. This study aimed to evaluate how XE991 affects nicotinic responses in intracardiac ganglion neurons. METHODS: We studied how the KCNQ channel inhibitor XE991 could affect nicotinic responses in acutely isolated rat intracardiac ganglion neurons using a perforated patch-clamp recording configuration and Ca2+ imaging. RESULTS: XE991 reversibly and concentration-dependently inhibited the nicotine (10 µM)-induced current with an IC50 of 14.4 µM. The EC50 values for nicotine-induced currents in the absence and presence of 10 µM XE991 were 8.7 and 12.0 µM, respectively. Because XE991 suppressed the maximum response of the nicotine concentration-response curve, the inhibitory effect of this drug appears to be noncompetitive. In addition, linopirdine reduced the amplitude of 10 µM nicotine-induced currents with an IC50 value of 16.9 µM. The inorganic KCNQ channel inhibitor Ba2+ affected neither the nicotine-induced current nor the inhibitory effect of XE991 on the nicotinic response. The KCNQ activator flupirtine at a concentration of 10 µM slightly but markedly inhibited the nicotine-induced current. Finally, XE991 inhibited the nicotine-induced elevation of intracellular calcium concentration and the nicotine-induced firing of action potentials. CONCLUSION: We propose that XE991 inhibits nicotinic acetylcholine receptors in intracardiac ganglion neurons, which in turn attenuate nicotine-induced neuronal excitation.


Assuntos
Receptores Nicotínicos , Animais , Neurônios , Nicotina/farmacologia , Ratos
3.
Inflamm Regen ; 42(1): 1, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983695

RESUMO

BACKGROUND: Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that acts downstream of cyclooxygenase and plays a major role in inflammation by converting prostaglandin (PG) H2 to PGE2. The present study investigated the effect of genetic deletion of mPGES-1 on the development of immunologic responses to experimental colitis induced by dextran sodium sulfate (DSS), a well-established model of inflammatory bowel disease (IBD). METHODS: Colitis was induced in mice lacking mPGES-1 (mPGES-1-/- mice) and wild-type (WT) mice by administering DSS for 7 days. Colitis was assessed by body weight loss, diarrhea, fecal bleeding, and histological features. The colonic expression of mPGES-1 was determined by real-time PCR, western blotting, and immunohistochemistry. The impact of mPGES-1 deficiency on T cell immunity was determined by flow cytometry and T cell depletion in vivo. RESULTS: After administration of DSS, mPGES-1-/- mice exhibited more severe weight loss, diarrhea, and fecal bleeding than WT mice. Histological analysis further showed significant exacerbation of colonic inflammation in mPGES-1-/- mice. In WT mice, the colonic expression of mPGES-1 was highly induced on both mRNA and protein levels and colonic PGE2 increased significantly after DSS administration. Additionally, mPGES-1 protein was localized in the colonic mucosal epithelium and infiltrated inflammatory cells in underlying connective tissues and the lamina propria. The abnormalities consistent with colitis in mPGES-1-/- mice were associated with higher expression of colonic T-helper (Th)17 and Th1 cytokines, including interleukin 17A and interferon-γ. Furthermore, lack of mPGES-1 increased the numbers of Th17 and Th1 cells in the lamina propria mononuclear cells within the colon, even though the number of suppressive regulatory T cells also increased. CD4+ T cell depletion effectively reduced symptoms of colitis as well as colonic expression of Th17 and Th1 cytokines in mPGES-1-/- mice, suggesting the requirement of CD4+ T cells in the exacerbation of DSS-induced colitis under mPGES-1 deficiency. CONCLUSIONS: These results demonstrate that mPGES-1 is the main enzyme responsible for colonic PGE2 production and deficiency of mPGES-1 facilitates the development of colitis by affecting the development of colonic T cell-mediated immunity. mPGES-1 might therefore impact both the intestinal inflammation and T cell-mediated immunity associated with IBD.

5.
Jpn J Infect Dis ; 74(4): 352-358, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33518621

RESUMO

Necrotizing pneumonia caused by Panton-Valentine leukocidin (PVL)-positive community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has high mortality rates and is currently a serious clinical issue. PVL is a two-component toxin (LukS-PV and LukF-PV). It can cause necrosis in target cells by forming pores consisting of an octamer comprised of LukS-PV and LukF-PV. However, considering the specificity of PVL towards several target cells and species, the specific effect of PVL remains controversial. Therefore, we focused on necrotizing pneumonia caused by PVL-positive S. aureus and clarified the effect of PVL on alveolar macrophages, which play a central role in innate immunity in the alveolar space. We constructed recombinant PVL (rPVL) components and stimulated alveolar macrophages isolated from rabbits to evaluate cytotoxicity and pro-inflammatory cytokine release. Recombinant LukS-PV (rLukS-PV), but not recombinant LukF-PV (rLukF-PV), induced pro-inflammatory cytokine release. Specifically, tumor necrosis factor (TNF)-α release was mediated by the C5a receptor (C5aR) expressed on rabbit alveolar macrophages, and the toxicity of rPVL, consisting of rLukS-PV and rLukF-PV, towards rabbit alveolar macrophages was mediated by the same receptor. Overall, our findings shed light on the C5aR-mediated cytotoxic effect of PVL on alveolar macrophages, which may be useful for understanding the mechanism of necrotizing pneumonia caused by PVL.


Assuntos
Toxinas Bacterianas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Exotoxinas/toxicidade , Leucocidinas/toxicidade , Macrófagos Alveolares/efeitos dos fármacos , Receptor da Anafilatoxina C5a/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Coelhos , Receptor da Anafilatoxina C5a/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidade
6.
Mol Ther Oncolytics ; 20: 48-58, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33575470

RESUMO

Necrosis, a form of cell death, occurs not only with the development of various diseases but also with a tumor tissue response to cancer treatment. Therefore, pursuing progress for cancer therapy through induction of necrosis may be one of the most effective approaches for cancer eradication. We herein describe the development of a real-time imaging system to visualize intratumoral necrosis. The system is composed of two types of cells expressing either one of two necrosis imaging reporters that consist of a DnaE intein sequence linking to one of two split-luciferase fragments. When necrosis occurs in a tumor composed of both of the cells, the two types of leaked reporters can reconstitute the enzymatic activity as a result of protein trans-splicing and thereby emit bioluminescence in the presence of the substrate. This system, which was constructed with shrimp-derived luciferase, allowed in vitro imaging of necrosis. We further confirmed real-time imaging of intratumoral necrosis caused by physical or chemical tissue disruption, validating its application in in vivo necrosis imaging. Thus, the constructed imaging system could be a powerful tool for the optimization of the therapeutic condition for cancer therapy and for the evaluation of novel anticancer drugs targeting necrosis.

7.
J Glob Antimicrob Resist ; 24: 180-182, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33373730

RESUMO

OBJECTIVES: The Klebsiella pneumoniae carbapenemase (blaKPC) gene is one of the most widespread carbapenemase genes in the world. However, there are few reports on KPC-producing bacteria in Japan. The aim of this study was therefore to investigate KPC-producing K. pneumoniae in Japan. METHODS: A KPC-2-producingK. pneumoniae strain (KAM260) was isolated from hospital sewage water in Japan in 2018. The complete genome was determined by whole-genome sequencing. Subsequent comparative sequence analysis of the blaKPC-2-carrying plasmid was performed. RESULTS: Klebsiella pneumoniae KAM260, belonging to sequence type 3026 (ST3026), harboured the blaKPC-2 gene in 114.6-kbp plasmid pKAM260_2 with IncFIB(pQIL) and IncFII(K) replicons. pKAM260_2 was highly identical to pKpQIL-like plasmids, which carry blaKPC genes and have spread worldwide. pKAM260_2 had functional conjugation-associated genes and was transferable to Escherichia coli. CONCLUSION: pKAM260_2, the self-transmissible plasmid carrying theblaKPC-2 gene, was detected from hospital sewage water in Japan and was characterised as a pKpQIL-like plasmid. This plasmid needs to be monitored in Japan in the future owing to its high diffusivity.


Assuntos
Klebsiella pneumoniae , Esgotos/microbiologia , Genoma Bacteriano , Hospitais , Humanos , Japão , Infecções por Klebsiella , Klebsiella pneumoniae/genética , Plasmídeos/genética , Água , Sequenciamento Completo do Genoma , beta-Lactamases/genética
8.
Biol Pharm Bull ; 43(11): 1660-1668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132310

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson's disease. LRRK2 is a large protein with multiple functional domains, including a guanosine 5'-triphosphate (GTP)-binding domain and a protein kinase domain. Recent studies indicated that the members of the Rab GTPase family, Rab8a and Rab10, which are involved in the membrane transport of the glucose transporter type 4 (GLUT4) during insulin-dependent glucose uptake, are phosphorylated by LRRK2. However, the physiological role of LRRK2 in the regulation of glucose metabolism is largely unknown. In the present study, we investigated the role of LRRK2 using dexamethasone (DEX)-induced glucose intolerance in mice. LRRK2 knockout (KO) mice exhibited suppressed glucose intolerance, even after treatment with DEX. The phosphorylation of LRRK2, Rab8a and Rab10 was increased in the adipose tissues of DEX-treated wild-type mice. In addition, inhibition of the LRRK2 kinase activity prevented the DEX-induced inhibition of GLUT4 membrane translocation and glucose uptake in cultured 3T3-L1 adipocytes. These results suggest that LRRK2 plays an important role in glucose metabolism in adipose tissues.


Assuntos
Tecido Adiposo/metabolismo , Dexametasona/efeitos adversos , Intolerância à Glucose/patologia , Transportador de Glucose Tipo 4/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Intolerância à Glucose/induzido quimicamente , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos
9.
Clin Sci (Lond) ; 134(20): 2771-2787, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33064141

RESUMO

The aim of the present study was to examine whether inhibition of Interleukin (IL)-6 signaling by MR16-1, an IL-6 receptor antibody, attenuates aortitis, cardiac hypertrophy, and arthritis in IL-1 receptor antagonist deficient (IL-1RA KO) mice. Four weeks old mice were intraperitoneally administered with either MR16-1 or non-immune IgG at dosages that were adjusted over time for 5 weeks. These mice were stratified into four groups: MR16-1 treatment groups, KO/MR low group (first 2.0 mg, following 0.5 mg/week, n=14) and KO/MR high group (first 4.0 mg, following 2.0 mg/week, n=19) in IL-1RA KO mice, and IgG treatment groups, KO/IgG group (first 2.0 mg, following 1.0 mg/week, n=22) in IL-1RA KO mice, and wild/IgG group (first 2.0 mg, following 1.0 mg/week, n=17) in wild mice. Aortitis, cardiac hypertrophy and arthropathy were histologically analyzed. Sixty-eight percent of the KO/IgG group developed aortitis (53% developed severe aortitis). In contrast, only 21% of the KO/MR high group developed mild aortitis, without severe aortitis (P<0.01, vs KO/IgG group). Infiltration of inflammatory cells, such as neutrophils, T cells, and macrophages, was frequently observed around aortic sinus of the KO/IgG group. Left ventricle and cardiomyocyte hypertrophy were observed in IL-1RA KO mice. Administration of high dosage of MR16-1 significantly suppressed cardiomyocyte hypertrophy. MR16-1 attenuated the incidence and severity of arthritis in IL-1RA KO mice in a dose-dependent manner. In conclusion, blockade of IL-6 signaling may exert a beneficial effect to attenuate severe aortitis, left ventricle hypertrophy, and arthritis.


Assuntos
Aortite/metabolismo , Artrite/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Interleucina-6/metabolismo , Transdução de Sinais , Animais , Anticorpos/farmacologia , Aortite/patologia , Artérias/patologia , Peso Corporal , Feminino , Hemodinâmica , Imunidade Inata , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Masculino , Camundongos Knockout , Tamanho do Órgão , Seio Aórtico/patologia
10.
Eur J Pharmacol ; 886: 173536, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32896550

RESUMO

The cardiac plexus, which contains parasympathetic ganglia, plays an important role in regulating cardiac function. Histamine is known to excite intracardiac ganglion neurons, but the underlying mechanism is obscure. In the present study, therefore, the effect of histamine on rat intracardiac ganglion neurons was investigated using perforated patch-clamp recordings. Histamine depolarized acutely isolated neurons with a half-maximal effective concentration of 4.5 µM. This depolarization was markedly inhibited by the H1 receptor antagonist triprolidine and mimicked by the H1 receptor agonist 2-pyridylethylamine, thus implicating histamine H1 receptors. Consistently, reverse transcription-PCR (RT-PCR) and Western blot analyses confirmed H1 receptor expression in the intracardiac ganglia. Under voltage-clamp conditions, histamine evoked an inward current that was potentiated by extracellular Ca2+ removal and attenuated by extracellular Na+ replacement with N-methyl-D-glucamine. This implicated the involvement of non-selective cation channels, which given the link between H1 receptors and Gq/11-protein-phospholipase C signalling, were suspected to be transient receptor potential canonical (TRPC) channels. This was confirmed by the marked inhibition of the inward current through the pharmacological disruption of either Gq/11 signalling or intracellular Ca2+ release and by the application of the TRPC blockers Pyr3, Gd3+ and ML204. Consistently, RT-PCR analysis revealed the expression of several TRPC subtypes in the intracardiac ganglia. Whilst histamine was also separately found to inhibit the M-current, the histamine-induced depolarization was only significantly inhibited by the TRPC blockers Gd3+ and ML204, and not by the M-current blocker XE991. These results suggest that TRPC channels serve as the predominant mediator of neuronal excitation by histamine.


Assuntos
Gânglios/citologia , Gânglios/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/inervação , Histamina/farmacologia , Canais Iônicos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Cátion TRPC/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Meglumina/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Wistar , Triprolidina/farmacologia , Fosfolipases Tipo C/efeitos dos fármacos
11.
Anticancer Res ; 39(7): 3719-3725, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262898

RESUMO

BACKGROUND: Hormone therapy and chemotherapy are not effective for castrate-resistant prostate cancer, thus development of novel treatment strategies is required. Gene therapy involving transient high-copy transfection of interleukin (IL)-24 with an adenoviral vector can exert antitumor activity; however, the effects of stable IL-24 transfection are not fully understood. The aim of this study was to investigate the effects of IL-24 overexpression in prostate cancer cells, in vitro. MATERIALS AND METHODS: DU145 cells were transfected the IL-24 gene using a retroviral vector. Apoptosis induction was investigated by the cell death detection ELISA, and the gene expression was analyzed by real time RT-PCR. RESULTS: IL-24 transduction suppressed the growth of prostate cancer and induced tumor cell apoptosis. In addition, up-regulation of epithelial markers and down-regulation of mesenchymal markers were noted, suggesting that tumor aggressiveness was reduced. CONCLUSION: Introduction of IL-24 displays antitumor activity both by induction of apoptosis and regulation of anchorage dependence.


Assuntos
Interleucinas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Apoptose , Proliferação de Células , Humanos , Masculino , Transdução Genética
12.
Thromb Haemost ; 119(8): 1311-1320, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31129913

RESUMO

Platelets play an important role in both physiological hemostasis and pathological thrombosis. Thromboxane (TX) A2 and prostaglandin (PG) I2 are well known as a potent stimulator and an inhibitor of platelet function, respectively. Recently, PGE2 has also been reported to regulate platelet function via PGE2 receptor subtypes. However, the effect of PGF2α on platelet function remains to be determined. The aim of the present study was to clarify the effect of PGF2α on murine platelet function both in vitro and in vivo. Platelets prepared from wild-type mice (WT platelets) expressed several types of prostanoid receptors, including the PGE2 receptor subtype EP3 and the TXA2 receptor TP, while expression of the PGF2α receptor FP was not detected. In WT platelets, PGF2α potentiated adenosine diphosphate-induced aggregation in a concentration-dependent manner, while PGF2α alone did not induce aggregation. In platelets prepared from mice lacking FP, however, PGF2α-induced potentiation was not significantly different from that in WT platelets. Interestingly, the potentiation was significantly blunted in platelets lacking EP3 or TP and disappeared completely in platelets lacking both EP3 and TP. Accordingly, PGF2α decreased the cyclic adenosine monophosphate level via EP3 and increased the inositol triphosphate level via TP in WT platelets. Intravenously administered PGF2α significantly shortened the bleeding time and aggravated arachidonic acid-induced acute thromboembolism in WT mice, suggesting that PGF2α works as a platelet stimulator also in vivo. In conclusion, PGF2α potentiates platelet aggregation in vitro via EP3 and TP but not FP. Accordingly, PGF2α facilitates hemostasis and thromboembolism in vivo.


Assuntos
Ativação Plaquetária , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Animais , Tempo de Sangramento , Plaquetas/metabolismo , AMP Cíclico/metabolismo , Dinoprosta , Feminino , Hemostasia , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Adesividade Plaquetária , Agregação Plaquetária , Tromboembolia/sangue
13.
J Immunol ; 200(2): 725-736, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29237778

RESUMO

The integration of inflammatory signals is paramount in controlling the intensity and duration of immune responses. Eicosanoids, particularly PGE2, are critical molecules in the initiation and resolution of inflammation and in the transition from innate to acquired immune responses. Microsomal PGE synthase 1 (mPGES1) is an integral membrane enzyme whose regulated expression controls PGE2 levels and is highly expressed at sites of inflammation. PGE2 is also associated with modulation of autoimmunity through altering the IL-23/IL-17 axis and regulatory T cell (Treg) development. During a type II collagen-CFA immunization response, lack of mPGES1 impaired the numbers of CD4+ regulatory (Treg) and Th17 cells in the draining lymph nodes. Ag-experienced mPGES1-/- CD4+ cells showed impaired IL-17A, IFN-γ, and IL-6 production when rechallenged ex vivo with their cognate Ag compared with their wild-type counterparts. Additionally, production of PGE2 by cocultured APCs synergized with that of Ag-experienced CD4+ T cells, with mPGES1 competence in the APC compartment enhancing CD4+ IL-17A and IFN-γ responses. However, in contrast with CD4+ cells that were Ag primed in vivo, exogenous PGE2 inhibited proliferation and skewed IL-17A to IFN-γ production under Th17 polarization of naive T cells in vitro. We conclude that mPGES1 is necessary in vivo to mount optimal Treg and Th17 responses during an Ag-driven primary immune response. Furthermore, we uncover a coordination of autocrine and paracrine mPGES1-driven PGE2 production that impacts effector T cell IL-17A and IFN-γ responses.


Assuntos
Comunicação Autócrina , Dinoprostona/metabolismo , Comunicação Parácrina , Prostaglandina-E Sintases/genética , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Epitopos de Linfócito T/imunologia , Regulação da Expressão Gênica , Imunização , Imunomodulação , Ativação Linfocitária/imunologia , Camundongos , Fenótipo , Prostaglandina-E Sintases/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/genética
14.
FASEB J ; 32(5): 2354-2365, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29247122

RESUMO

Nonalcoholic steatohepatitis (NASH) is a hepatic manifestation of metabolic syndrome. Although the prostaglandin (PG)I2 receptor IP is expressed broadly in the liver, the role of PGI2-IP signaling in the development of NASH remains to be determined. Here, we investigated the role of the PGI2-IP system in the development of steatohepatitis using mice lacking the PGI2 receptor IP [IP-knockout (IP-KO) mice] and beraprost (BPS), a specific IP agonist. IP-KO and wild-type (WT) mice were fed a methionine- and choline-deficient diet (MCDD) for 2, 5, or 10 wk. BPS was administered orally to mice every day during the experimental periods. The effect of BPS on the expression of chemokine and inflammatory cytokines was examined also in cultured Kupffer cells. WT mice fed MCDD developed steatohepatitis at 10 wk. IP-KO mice developed steatohepatitis at 5 wk with augmented histologic derangements accompanied by increased hepatic monocyte chemoattractant protein-1 (MCP-1) and TNF-α concentrations. After 10 wk of MCDD, IP-KO mice had greater hepatic iron deposition with prominent oxidative stress, resulting in hepatocyte damage. In WT mice, BPS improved histologic and biochemical parameters of steatohepatitis, accompanied by reduced hepatic concentration of MCP-1 and TNF-α. Accordingly, BPS suppressed the LPS-stimulated Mcp-1 and Tnf-α mRNA expression in cultured Kupffer cells prepared from WT mice. PGI2-IP signaling plays a crucial role in the development and progression of steatohepatitis by modulating the inflammatory response, leading to augmented oxidative stress. We suggest that the PGI2-IP system is an attractive therapeutic target for treating patients with NASH.-Kumei, S., Yuhki, K.-I., Kojima, F., Kashiwagi, H., Imamichi, Y., Okumura, T., Narumiya, S., Ushikubi, F. Prostaglandin I2 suppresses the development of diet-induced nonalcoholic steatohepatitis in mice.


Assuntos
Epoprostenol/farmacologia , Alimentos Formulados/efeitos adversos , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Epoprostenol/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/patologia , Células de Kupffer/patologia , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Receptores de Epoprostenol/agonistas , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
15.
TH Open ; 1(2): e122-e129, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31249917

RESUMO

The results of studies that were performed to determine whether cigarette smoking affects platelet function have been controversial, and the effects of nicotine- and tar-free cigarette smoke extract (CSE) on platelet function remain to be determined. The aim of this study was to determine the effect of CSE on platelet aggregation and to clarify the mechanism by which CSE affects platelet function. CSE inhibited murine platelet aggregation induced by 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U-46619), a thromboxane (TX) A 2 receptor agonist, and that induced by collagen with respective IC 50 values of 1.05 ± 0.14% and 1.34 ± 0.19%. A similar inhibitory action of CSE was also observed in human platelets. CSE inhibited arachidonic acid-induced TXA 2 production in murine platelets with an IC 50 value of 7.32 ± 2.00%. Accordingly, the inhibitory effect of CSE on collagen-induced aggregation was significantly blunted in platelets lacking the TXA 2 receptor compared with the inhibitory effect in control platelets. In contrast, the antiplatelet effects of CSE in platelets lacking each inhibitory prostanoid receptor, prostaglandin (PG) I 2 receptor and PGE 2 receptor subtypes EP 2 and EP 4 , were not significantly different from the effects in respective control platelets. Among the enzymes responsible for TXA 2 production in platelets, the activity of cyclooxygenase (COX)-1 was inhibited by CSE with an IC 50 value of 1.07 ± 0.15% in an uncompetitive manner. In contrast, the activity of TX synthase was enhanced by CSE. The results indicate that CSE inhibits COX-1 activity and thereby decreases TXA 2 production in platelets, leading to inhibition of platelet aggregation.

16.
Biomed Pharmacother ; 84: 660-665, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27697638

RESUMO

The vascular endothelial growth factor (VEGF) family has a key role in the formation of blood vessels and lymphatics. Among the members of this family, VEGF-C is one of the most important factors involved in lymphangiogenesis via binding with two receptors (vascular endothelial growth factor receptor-2 and -3: VEGFR-2 and VEGFR-3). Soluble VEGFR-2 (sVEGFR-2) has a role in maintaining the alymphatic state of the cornea associated with binding to VEGF-C, and selectively inhibits lymphangiogenesis but not angiogenesis. In this study, we introduced sVEGFR-2 into lung cancer cells and evaluated the influence on tumor progression and on genes regulating lymphatic formation and metastasis in vivo. A retroviral vector was used to introduce the sVEGFR-2 gene into Lewis lung carcinoma cells (LLC), which were designated as LLC-sVEGFR-2 cells. Proteins secreted into the culture supernatant by these cells were detected by western blotting using specific antibodies. To examine lymphangiogenesis by primary lung cancer in vivo, LLC-sVEGFR-2 cells were subcutaneously injected into C57BL/6 mice. At 14days after injection, immunohistochemistry was performed using an antibody directed against lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a marker of lymphatics. Expression of mRNA for VEGFR-2, VEGFR-3 and matrix metalloproteinases (MMPs) was also determined by real-time PCR. Furthermore, LLC-sVEGFR-2 cells were directly inoculated into the left lung in C57BL/6 mice and the number of micro-metastases in pulmonary lymph nodes was determined. Introduction of sVEGFR-2 into LLC cells resulted in secretion of sVEGFR-2 protein into the culture supernatant. There were fewer LYVE-1 positive lymphatics after inoculation of LLC-sVEGFR-2 into mice compared with the control group. In addition, VEGFR-2, VEGFR-3, and MMPs gene expression was suppressed in the primary tumors of the LLC-sVEGFR-2 group compared with the control group. Furthermore, there were fewer micro-metastases in the pulmonary lymph nodes of the LLC-sVEGFR-2 group compared with the control group after cells were directly inoculated into the lung. These findings indicate that introduction of sVEGFR-2 suppressed lymphangiogenesis in primary lung cancer and also suppressed lymphogenic metastasis by inhibiting VEGF-C, followed by down-regulation of VEGFR-2, VEGFR-3 and MMPs. Accordingly, sVEGFR-2 might be a promising target for treatment of cancer by regulating lymphangiogenesis and lymphogenic metastasis.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Metástase Linfática , Vasos Linfáticos/patologia , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Micrometástase de Neoplasia , Transdução de Sinais , Solubilidade , Transfecção , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
J Pharmacol Exp Ther ; 353(2): 269-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740898

RESUMO

ONO-1301 [(E)-[5-[2-[1-phenyl-1-(3-pyridyl)methylidene-aminooxy]ethyl]-7,8-dihydronaphthalene-1-yloxy]acetic acid] is a novel prostaglandin (PG) I2 mimetic with inhibitory activity on the thromboxane (TX) A2 synthase. Interestingly, ONO-1301 retains its inhibitory effect on platelet aggregation after repeated administration, while beraprost, a representative agonist for the PGI2 receptor (IP), loses its inhibitory effect after repeated administration. In the present study, we intended to clarify the mechanism by which ONO-1301 escapes desensitization of an antiplatelet effect. In platelets prepared from wild-type mice, ONO-1301 inhibited collagen-induced aggregation and stimulated cAMP production in an IP-dependent manner. In addition, ONO-1301 inhibited arachidonic acid-induced TXA2 production in platelets lacking IP. Despite the decrease in stimulatory action on cAMP production, the antiplatelet effect of ONO-1301 hardly changed after repeated administration for 10 days in wild-type mice. Noteworthy, beraprost could retain its antiplatelet effect after repeated administration in combination with a low dose of ozagrel, a TXA2 synthase inhibitor. Therefore, we hypothesized that chronic IP stimulation by beraprost induces an increase in TXA2 production, leading to reduction in the antiplatelet effect. As expected, repeated administration of beraprost increased the plasma and urinary levels of a TXA2 metabolite, while ONO-1301 did not increase them significantly. In addition, beraprost could retain the ability to inhibit platelet aggregation after repeated administration in mice lacking the TXA2 receptor (TP). These results indicate that TP-mediated signaling participates in platelet desensitization against IP agonists and that simultaneous inhibition of TXA2 production confers resistance against desensitization on IP agonists.


Assuntos
Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacologia , Tromboxano A2/biossíntese , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , AMP Cíclico/biossíntese , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Masculino , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/administração & dosagem , Piridinas/administração & dosagem , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tromboxano A2/metabolismo , Tromboxano-A Sintase/antagonistas & inibidores
18.
J Immunol ; 191(10): 4979-88, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24127557

RESUMO

Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that specifically catalyzes the conversion of PGH2 to PGE2. We showed that mPGES-1 null mice had a significantly reduced incidence and severity of collagen-induced arthritis compared with wild-type (WT) mice associated with a marked reduction in Abs to type II collagen. In this study, we further elucidated the role of mPGES-1 in the humoral immune response. Basal levels of serum IgM and IgG were significantly reduced in mPGES-1 null mice. Compared with WT mice, mPGES-1 null mice exhibited a significant reduction of hapten-specific serum Abs in response to immunization with the T cell-dependent (TD) Ag DNP-keyhole limpet hemocyanin. Immunization with the T cell-independent type 1 Ag trinitrophenyl-LPS or the T cell-independent type 2 Ag DNP-Ficoll revealed minimal differences between strains. Germinal center formation in the spleen of mPGES-1 null and WT mice were similar after immunization with DNP-keyhole limpet hemocyanin. To determine whether the effect of mPGES-1 and PGE2 was localized to hematopoietic or nonhematopoietic cells, we generated bone marrow chimeras. We demonstrated that mPGES-1 deficiency in nonhematopoietic cells was the critical factor for reduced TD Ab production. We conclude that mPGES-1 and PGE2-dependent phenotypic changes of nonhematopoietic/mesenchymal stromal cells play a key role in TD humoral immune responses in vivo. These findings may have relevance to the pathogenesis of rheumatoid arthritis and other autoimmune inflammatory diseases associated with autoantibody formation.


Assuntos
Artrite Experimental/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Oxirredutases Intramoleculares/deficiência , Linfócitos T/imunologia , Animais , Artrite Experimental/genética , Transplante de Medula Óssea , Células Cultivadas , Colágeno/imunologia , Feminino , Imunidade Humoral , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Prostaglandina-E Sintases
19.
Kidney Int ; 82(2): 158-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22513820

RESUMO

Inflammatory responses in the kidney lead to tubulointerstitial fibrosis, a common feature of chronic kidney diseases. Here we examined the role of prostaglandin E(2) (PGE(2)) in the development of tubulointerstitial fibrosis. In the kidneys of wild-type mice, unilateral ureteral obstruction leads to progressive tubulointerstitial fibrosis with macrophage infiltration and myofibroblast proliferation. This was accompanied by an upregulation of COX-2 and PGE(2) receptor subtype EP(4) mRNAs. In the kidneys of EP(4) gene knockout mice, however, obstruction-induced histological alterations were significantly augmented. In contrast, an EP(4)-specific agonist significantly attenuated these alterations in the kidneys of wild-type mice. The mRNAs for macrophage chemokines and profibrotic growth factors were upregulated in the kidneys of wild-type mice after ureteral obstruction. This was significantly augmented in the kidneys of EP(4)-knockout mice and suppressed by the EP(4) agonist but only in the kidneys of wild-type mice. Notably, COX-2 and MCP-1 proteins, as well as EP(4) mRNA, were localized in renal tubular epithelial cells after ureteral obstruction. In cultured renal fibroblasts, another EP(4)-specific agonist significantly inhibited PDGF-induced proliferation and profibrotic connective tissue growth factor production. Hence, an endogenous PGE(2)-EP(4) system in the tubular epithelium limits the development of tubulointerstitial fibrosis by suppressing inflammatory responses.


Assuntos
Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Nefropatias/prevenção & controle , Túbulos Renais/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Fibrose , Ácido Fólico , Regulação da Expressão Gênica , Heptanoatos/farmacologia , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Miofibroblastos/patologia , RNA Mensageiro/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/deficiência , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...