Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(21): 217004, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860085

RESUMO

Hybridization of Bogoliubov quasiparticles (BQPs) between the CuO_{2} layers in the triple-layer cuprate high-temperature superconductor Bi_{2}Sr_{2}Cu_{2}Cu_{3}O_{10+δ} is studied by angle-resolved photoemission spectroscopy (ARPES). In the superconducting state, an anticrossing gap opens between the outer- and inner-BQP bands, which we attribute primarily to interlayer single-particle hopping with possible contributions from interlayer Cooper pairing. We find that the d-wave superconducting gap of both BQP bands smoothly develops with momentum without an abrupt jump in contrast to a previous ARPES study. Hybridization between the BQPs also gradually increases in going from the off nodal to the antinodal region, which is explained by the momentum dependence of the interlayer single-particle hopping. As possible mechanisms for the enhancement of the superconducting transition temperature, the hybridization between the BQPs as well as the combination of phonon modes of the triple CuO_{2} layers and spin fluctuations represented by a four-well model are discussed.

2.
Phys Rev Lett ; 104(22): 227001, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867198

RESUMO

We report the first observation of the multilayer band splitting in the optimally doped trilayer cuprate Bi2Sr2Ca2Cu3O(10+δ) (Bi2223) by angle-resolved photoemission spectroscopy. The observed energy bands and Fermi surfaces are originated from the outer and inner CuO2 planes (OP and IP). The OP band is overdoped with a large d-wave gap around the node of Δ0∼43 meV while the IP is underdoped with an even large gap of Δ0∼60 meV. These energy gaps are much larger than those for the same doping level of the double-layer cuprates, which leads to the large Tc in Bi2223. We propose possible origins of the large superconducting gaps for the OP and IP: (1) minimal influence of out-of-plane disorder and a proximity effect and (2) interlayer tunneling of Cooper pairs between the OP and IP.

3.
Phys Rev Lett ; 95(15): 157001, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16241752

RESUMO

Muon spin relaxation measurements in high transverse magnetic fields [FORMULA: SEE TEXT] revealed strong field-induced quasistatic magnetism in the underdoped and Eu-doped (La,Sr)2CuO4 and La1.875Ba0.125CuO4, existing well above Tc and TN. The susceptibility counterpart of Cu spin polarization, derived from the muon spin relaxation rate, exhibits a divergent behavior towards T approximately 25 K. No field-induced magnetism was detected in overdoped La1.81Sr0.19CuO4, optimally doped Bi2212, and Zn-doped YBa2Cu3O7.

4.
Phys Rev Lett ; 95(9): 097006, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16197242

RESUMO

The effect of disorder on the superconducting transition temperature T(c) of cuprate superconductors is examined. Disorder is introduced into the cation sites in the plane adjacent to the CuO2 planes of two single-layer systems, Bi(2.0)Sr(1.6)Ln(0.4)CuO(6+delta) and La(1.85-y)Nd(y)Sr0.15CuO4. Disorder is controlled by changing rare earth (Ln) ions with a different ionic radius in the former, and by varying the Nd content in the latter with the doped carrier density kept constant. We show that this type of disorder works as weak scatterers in contrast to the in-plane disorder produced by Zn, but remarkably reduces T(c), suggesting novel effects of disorder on high-T(c) superconductivity.

5.
Phys Rev Lett ; 92(13): 137402, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15089644

RESUMO

We report a resonant inelastic x-ray scattering study of charge excitations in the quasi-one-dimensional Mott insulator SrCuO2. We observe a continuum of low-energy excitations, the onset of which exhibits a small dispersion of approximately 0.4 eV. Within this continuum, a highly dispersive feature with a large sinusoidal dispersion (approximately 1.1 eV) is observed. We have also measured the optical conductivity, and studied the dynamic response of the extended Hubbard model with realistic parameters, using a dynamical density-matrix renormalization group method. In contrast to earlier work, we do not find a long-lived exciton, but rather these results suggest that the excitation spectrum comprises a holon-antiholon continuum together with a broad resonance.

6.
Phys Rev Lett ; 91(20): 207603, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14683396

RESUMO

Muon spin relaxation and magnetic susceptibility measurements have been performed on the pure and diluted spin 1/2 kagomé system (CuxZn(1-x))3V2O7(OH)2 2H2O. In the pure x=1 system we found a slowing down of Cu spin fluctuations with decreasing temperature towards T approximately 1 K, followed by slow and nearly temperature-independent spin fluctuations persisting down to T=50 mK, indicative of quantum fluctuations. No indication of static spin freezing was detected in either of the pure (x=1.0) or diluted samples. The observed magnitude of fluctuating fields indicates that the slow spin fluctuations represent an intrinsic property of kagomé network rather than impurity spins.

7.
Phys Rev Lett ; 89(24): 247001, 2002 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-12484973

RESUMO

The c-axis reflectivity spectrum of underdoped YBa2Cu3O6.6 (YBCO) is measured below T(c)=59 K in parallel magnetic fields H parallel CuO2 up to 7 T. Upon application of a parallel field, a new peak appears at finite frequency in the optical conductivity at the expense of suppression of c-axis condensate weight. We conclude that the dramatic change originates from different Josephson coupling strengths between bilayers with and without Josephson vortices. We find that the 400 cm(-1) broad conductivity peak in YBCO gains the spectral weight under parallel magnetic field; this indicates that the condensate weight at omega=0 is distributed to this peak as well as to the new optical Josephson mode.

8.
Phys Rev Lett ; 86(18): 4140-3, 2001 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11328115

RESUMO

A transverse optical plasma mode is observed at far-infrared frequencies within the superconducting gap region by measuring the c-axis optical reflectivity for single crystals of T* cuprate superconductors SmLa0.85Sr0.15CuO4-delta and Nd1.4Sr0.4Ce0.2CuO4-delta. These T* cuprates have two different insulating layers sandwiching the superconducting CuO2 planes, leading to two longitudinal plasmons. Also, the transverse mode is directly observed due to the coupling of the infrared radiation with the current perpendicular to the superconducting layers which are regarded as an alternating array of two inequivalent Josephson junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...