Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772566

RESUMO

This work analyzes a built-in slider detection method for a charge-induction type electrostatic film actuator with a high surface-resistance slider. In the detection method, one stator electrode is detached from the parallel driving electrodes and is dedicated to sensing. When a slider with induced charges moves over the sensing electrode, electrostatic induction occurs in the sensing electrode, which causes an electric current. The current is converted to a voltage through a detection resistance, which will be an output of the sensing circuit. This paper provides a framework to analyze the output signal waveform and shows that the waveform consists of two components. One component is caused by driving voltage and appears regardless of the existence of a slider. The other component corresponds to the movement of a slider, which appears only when a slider is moving over the sensing electrode. Therefore, the slider can be detected by monitoring the latter component. The two components generally overlap, which makes the detection of the latter component difficult in some cases. This paper proposes a method to decouple the two components by switching the detection resistance at an appropriate time. These methods are verified using a prototype actuator that has an electrode pitch of 0.6 mm. The actuator was driven with a set of pulse voltages with an amplitude of 1000 V. The experimental results show similar waveforms to the analytical results, verifying the proposed analytical framework. The performance of the sensing method as a proximity sensor was verified in the experiments, and it was confirmed that the slider can be detected when it approaches the sensing electrode within about 3 mm.

2.
Sci Rep ; 11(1): 22126, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764337

RESUMO

(-)-Carvone is a monoterpenoid with a spearmint flavor. A sustainable biotechnological production process for (-)-carvone is desirable. Although all enzymes in (-)-carvone biosynthesis have been functionally expressed in Escherichia coli independently, the yield was low in previous studies. When cytochrome P450 limonene-6-hydroxylase (P450)/cytochrome P450 reductase (CPR) and carveol dehydrogenase (CDH) were expressed in a single strain, by-product formation (dihydrocarveol and dihydrocarvone) was detected. We hypothesized that P450 and CDH expression levels differ in E. coli. Thus, two strains independently expressing P450/CPR and CDH were mixed with different ratios, confirming increased carvone production and decreased by-product formation when CDH input was reduced. The optimum ratio of enzyme expression to maximize (-)-carvone production was determined using the proteome analysis quantification concatamer (QconCAT) method. Thereafter, a single strain expressing both P450/CPR and CDH was constructed to imitate the optimum expression ratio. The upgraded strain showed a 15-fold improvement compared to the initial strain, showing a 44 ± 6.3 mg/L (-)-carvone production from 100 mg/L (-)-limonene. Our study showed the usefulness of the QconCAT proteome analysis method for strain development in the industrial biotechnology field.


Assuntos
Monoterpenos Cicloexânicos/metabolismo , Escherichia coli/metabolismo , Limoneno/metabolismo , Proteoma/metabolismo , Oxirredutases do Álcool/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Monoterpenos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/metabolismo
3.
Appl Microbiol Biotechnol ; 97(11): 5137-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23604558

RESUMO

In order to reduce the cost of bioethanol production from lignocellulosic biomass, we conferred the ability to ferment cellulosic materials directly on Zymobacter palmae by co-expressing foreign endoglucanase and ß-glucosidase genes. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, the six genes encoding the cellulolytic enzymes (CenA, CenB, CenD, CbhA, CbhB, and Cex) from Cellulomonas fimi were introduced and expressed in Z. palmae. Of these cellulolytic enzyme genes cloned, CenA degraded carboxymethylcellulose and phosphoric acid-swollen cellulose (PASC) efficiently. The extracellular CenA catalyzed the hydrolysis of barley ß-glucan and PASC to liberate soluble cello-oligosaccharides, indicating that CenA is the most suitable enzyme for cellulose degradation among those cellulolytic enzymes expressed in Z. palmae. Furthermore, the cenA gene and ß-glucosidase gene (bgl) from Ruminococcus albus were co-expressed in Z. palmae. Of the total endoglucanase and ß-glucosidase activities, 57.1 and 18.1 % were localized in the culture medium of the strain. The genetically engineered strain completely saccharified and fermented 20 g/l barley ß-glucan to ethanol within 84 h, producing 79.5 % of the theoretical yield. Thus, the production and secretion of CenA and BGL enabled Z. palmae to efficiently ferment a water-soluble cellulosic polysaccharide to ethanol.


Assuntos
Celulase/metabolismo , Cellulomonas/enzimologia , Etanol/metabolismo , Halomonadaceae/metabolismo , Ruminococcus/enzimologia , beta-Glucanas/metabolismo , beta-Glucosidase/metabolismo , Celulase/genética , Cellulomonas/genética , Expressão Gênica , Halomonadaceae/enzimologia , Halomonadaceae/genética , Hordeum/química , Engenharia Metabólica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/genética , beta-Glucanas/isolamento & purificação , beta-Glucosidase/genética
4.
Appl Microbiol Biotechnol ; 96(4): 1093-104, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23053081

RESUMO

In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae.


Assuntos
Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Celulase/genética , Cellulomonas/enzimologia , Etanol/metabolismo , Expressão Gênica , Halomonadaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Celulase/química , Celulase/metabolismo , Cellulomonas/genética , Halomonadaceae/genética , Dados de Sequência Molecular , Engenharia de Proteínas , Transporte Proteico , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
5.
Appl Microbiol Biotechnol ; 94(6): 1667-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22573268

RESUMO

An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).


Assuntos
Etanol/metabolismo , Madeira/microbiologia , Zymomonas/genética , Zymomonas/metabolismo , Celulose/metabolismo , Fermentação , Engenharia Genética , Glucose/metabolismo , Hidrólise , Manose/metabolismo , Madeira/química , Madeira/metabolismo , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...