Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(10): 1518-1521, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935787

RESUMO

Promising sulfurized polyethylene glycol (SPEG) composite cathodes with a high-rate capability over 3000 mA g-1 at 393 K are fabricated for Al metal anode rechargeable batteries with a 61.0-26.0-13.0 mol% AlCl3-NaCl-KCl inorganic ionic liquid electrolyte. The combination of the SPEG composite cathodes and chloroaluminate inorganic IL can readily enhance the performance of the Al-S batteries, e.g., discharge capacity and cycle stability.

2.
Sci Rep ; 10(1): 16918, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037301

RESUMO

Designing a high-capacity positive electrode material is critical for the advancement of lithium-ion batteries. Sulfurized polyethylene glycol (SPEG), containing ca. 61 wt% of sulfur, is a promising positive electrode material that exhibits a large initial discharge capacity of more than 800 mAh g-1. In this study, we present the local structure and electrochemical performances of SPEG. A high-energy X-ray total scattering experiment revealed that sulfur in SPEG is predominantly fragmented and bound to carbon atoms. The changes in the physicochemical properties of SPEG due to heat treatment with nitrogen gas at various temperatures were investigated using thermogravimetric analysis, Raman spectroscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. Comparing the electrochemical performances of SPEG after heat treatment at various temperatures, it was found that S-S and C=S bonds contribute to the overall electrochemical performance of SPEG.

3.
ACS Appl Mater Interfaces ; 12(8): 9322-9331, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32026681

RESUMO

Sodium titanium oxide with a spinel-type structure is suitable for the stable sodium-intercalation host for the negative electrode of sodium-ion batteries, such as the spinel-type lithium titanium oxide (Li4Ti5O12, LTO) material for lithium-ion batteries. Recently, this has been partly discovered as the Na3LiTi5O12 (NTO) phase in the LTO particle. However, the single-phase NTO material has never been obtained, preventing accurate material characterizations and applications. Here, we successfully realized the NTO material with the single-phase by the chemical sodium insertion-extraction process. The chemical sodium-inserted LTO material is well converted to the pure NTO phase in the single particle level, via following chemical oxidation by water. The purified material was about 97 mol % of NTO as the single-phase spinel structure with a = 8.746 Å. The basic lattice framework of the prepared NTO was confirmed to be the same as that of the LTO. The single-phase NTO electrode shows 0.8 V versus Na+/Na of the Na-insertion and extraction potential, and 99.4% of Na-insertion capacity with 99.7% of Coulombic efficiency during 200 cycles of the Na-ion half-cell experiment. Further, the Na2Fe2(SO4)3/NTO full-cell shows 3 V-class stable charge-discharge character during 100 cycles. This excellent stability of Na-insertion and extraction properties of single-phase NTO extends the range of constructing safe and stable high-voltage oxide-based sodium-ion battery cells for practical use.

4.
Inorg Chem ; 58(19): 13102-13107, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31502447

RESUMO

A face-centered-cubic (FCC) YH3 phase is known to be stable only under high pressure (HP) of more than gigapascal order, and it reverts to the hexagonal YH3 ambient-pressure phase when the pressure is released. We previously found that the FCC YH3 can be stabilized even at ambient pressure by substituting Y for 10 mol % Li (LiH-stabilized YH3, LSY). The LSY was synthesized by heat treatment under gigapascal HP, but this process is unfavorable for mass production; that is, only a few tens of milligrams of a sample can be obtained in a single batch. In this study, we overcame this problem by applying a ball milling (BM) process for synthesizing the LSY phase, and the yield by the BM process reached on the order of grams. We confirmed that the structure of the BM sample was the same as that of the HP sample by X-ray diffractometry, Raman spectroscopy, and neutron total scattering pair distribution function analyses. The crystallinity of the BM sample, however, was lower than that of the HP sample. The difference in the crystallinity affects the thermal stability of the LSY. The BM sample with a lower crystallinity released hydrogen at a lower temperature. The BM sample was found to reversibly desorb/absorb hydrogen maintaining its initial FCC structure when the rehydrogenation temperature was at 423 K. However, when the rehydrogenation temperature of BM sample was more than 573 K, the FCC structure changed to the hexagonal ambient pressure phase due to thermal instability of FCC phase for the BM sample.

5.
J Chem Phys ; 151(7): 074503, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438686

RESUMO

Based on experimental data, we optimized the potential parameters for the classical molecular dynamics simulation to reproduce the volume and ionic conductivity of the molten alkali-metal carbonates A2CO3 where A = Li, Na, K, Rb, and Cs at T/K = 1223 and ambient pressure. The force field was then applied to the binary mixtures (Li1-xCsx)2CO3 and (Li1-xKx)2CO3. In (Li1-xCsx)2CO3, the diffusion coefficient DCs exceeds DLi at x > 0.6, testifying to the Chemla effect. The net ionic conductivity was broken down into the contributions from the velocity auto- and cross-correlations of each ionic species. The significant negative deviation of the real conductivity of (Li1-xCsx)2CO3 from the one estimated by the Nernst-Einstein (NE) relation is clearly explained by the contribution from the cross correlations; specifically, the cross term between Li+and CO3 2-, which is negative at x = 0, significantly shifts to the positive side when x increases, which is dominantly responsible for dampening the conductivity from the NE conductivity. A similar behavior was observed in (Li1-xKx)2CO3 with a less pronounced manner than in (Li1-xCsx)2CO3. These observations corroborate the precedent studies pointing to the trapping of Li+ by the anion when a lithium salt is mixed with another salt of which the cation size is greater than that of Li+.

6.
Sci Rep ; 4: 3650, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24413423

RESUMO

Using sodium, instead of lithium, in rechargeable batteries is a way to circumvent the lithium's resource problem. The challenge is to find an electrode material that can reversibly undergo redox reactions in a sodium-electrolyte at the desired electrochemical potential. We proved that indigo carmine (IC, 5,5'-indigodisulfonic acid sodium salt) can work as a positive-electrode material in not only a lithium-, but also a sodium-electrolyte. The discharge capacity of the IC-electrode was ~100 mAh g(-1) with a good cycle stability in either the Na or Li electrolyte, in which the average voltage was 1.8 V vs. Na(+)/Na and 2.2 V vs. Li(+)/Li, respectively. Two Na ions per IC are stored in the electrode during the discharge, testifying to the two-electron redox reaction. An X-ray diffraction analysis revealed a layer structure for the IC powder and the DFT calculation suggested the formation of a band-like structure in the crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...