Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cannabis Cannabinoid Res ; 8(2): 321-334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35920857

RESUMO

Background: Cannabidiol (CBD), one major nonintoxicating phytocannabinoid from Cannabis sativa demonstrated anti-inflammatory effects in animal models of several inflammatory conditions, including arthritis. However, it is still unknown which cell types mediate these anti-inflammatory effects of CBD, and, since CBD binds to a plethora of receptors and enzymes, it is complicated to pinpoint its mechanism of action. In this study, we elucidate the effects of CBD on B cells and peripheral blood mononuclear cells (PBMCs) in respect to survival, calcium mobilization, drug uptake, and cytokine (IL-6, IL-10, and TNF) and immunoglobulin production. Methods: Modulation of intracellular calcium and drug uptake in B cells was determined by using the fluorescent dyes Cal-520 and PoPo3, respectively. Cytokine and immunoglobulin production was evaluated by enzyme-linked immunosorbent assay. PBMC composition and B cell survival after CBD treatment was assessed by flow cytometry. Results: B cells express two major target receptors for CBD, TRPV2 (transient receptor potential vanilloid 2) and TRPA1 (transient receptor potential ankyrin 1), which are not regulated by B cell activation. CBD increased intracellular calcium levels in mouse and human B cells, which was accompanied by enhanced uptake of PoPo3. These effects were not dependent on transient receptor potential channel activation. CBD increased the number of early apoptotic B cells at the expense of viable cells and diminished interleukin (IL)-10 and tumor necrosis factor (TNF) production when activated T cell independently. In PBMCs, CBD increased IL-10 production when B cells were activated T cell dependent, while decreasing TNF levels when activated T cell independently. In PBMC/rheumatoid synovial fibroblast cocultures, CBD reduced IL-10 production when B cells were activated T cell independently. Immunoglobulin M production was augmented by CBD when B cells were activated with CpG. Conclusion: CBD is able to provide pro- and anti-inflammatory effects in isolated B cells and PBMCs. This is dependent on the activating stimulus (T cell dependent or independent) and concentration of CBD. Therefore, CBD might be used to dampen B cell activity in autoimmune conditions such as rheumatoid arthritis, in which B cells are activated by specific autoantigens.


Assuntos
Artrite Reumatoide , Canabidiol , Humanos , Animais , Camundongos , Técnicas de Cocultura , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Interleucina-10/metabolismo , Canabidiol/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Anti-Inflamatórios/metabolismo , Imunoglobulinas/metabolismo , Imunoglobulinas/farmacologia
2.
Biomedicines ; 10(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35625855

RESUMO

δ9-Tetrahydrocannabinol (THC) has demonstrated anti-inflammatory effects in animal models of arthritis, but its mechanism of action and cellular targets are still unclear. The purpose of this study is to elucidate the effects of THC (0.1-25 µM) on synovial fibroblasts from patients with rheumatoid arthritis (RASF) and peripheral blood mononuclear cells (PBMC) from healthy donors in respect to proliferation, calcium mobilization, drug uptake, cytokine and immunoglobulin production. Intracellular calcium and drug uptake were determined by fluorescent dyes Cal-520 and PoPo3, respectively. Cytokine and immunoglobulin production were evaluated by ELISA. Cannabinoid receptors 1 and 2 (CB1 and CB2) were detected by flow cytometry. RASF express CB1 and CB2 and the latter was increased by tumor necrosis factor (TNF). In RASF, THC (≥5 µM) increased intracellular calcium levels/PoPo3 uptake in a TRPA1-dependent manner and reduced interleukin-8 (IL-8) and matrix metalloprotease 3 (MMP-3) production at high concentrations (25 µM). Proliferation was slightly enhanced at intermediate THC concentrations (1-10 µM) but was completely abrogated at 25 µM. In PBMC alone, THC decreased interleukin-10 (IL-10) production and increased immunoglobulin G (IgG). In PBMC/RASF co-culture, THC decreased TNF production when cells were stimulated with interferon-γ (IFN-γ) or CpG. THC provides pro- and anti-inflammatory effects in RASF and PBMC. This is dependent on the activating stimulus and concentration of THC. Therefore, THC might be used to treat inflammation in RA but it might need titrating to determine the effective concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...