Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 168: 106058, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763088

RESUMO

The number of lipophilic drug candidates in pharmaceutical discovery pipelines has increased in recent years. These drugs often possess physicochemical properties that result in poor oral bioavailability, and their clinical potential may be limited without adequate formulation strategies. Cannabidiol (CBD) is an excellent example of a highly lipophilic compound with poor oral bioavailability, due to low water solubility and extensive first-pass metabolism. An approach that may overcome these limitations is formulation of the drug in self-nanoemulsifying drug delivery systems (SNEDDS). Herein, CBD-SNEDDS formulations were prepared and evaluated in vitro. Promising formulations (F2, F4) were administered to healthy female Sprague-Dawley rats via oral gavage (20 mg/kg CBD). Resulting pharmacokinetic parameters of CBD were compared to those obtained following administration of CBD in two oil-based formulations: a medium-chain triglyceride oil vehicle (MCT-CBD), and a sesame oil-based formulation similar in composition to an FDA-approved formulation of CBD, Epidiolex® (SO-CBD). Compared to MCT-CBD, administration of the SNEDDS formulations led to more rapid absorption of CBD (median Tmax values: 0.5 h (F2), 1 h (F4), 6 h (MCT-CBD)). Administration of F2 and F4 formulations also improved the systemic exposure to CBD by 2.2 and 2.8-fold compared to MCT-CBD; however, no improvement was found compared to SO-CBD.


Assuntos
Canabidiol , Nanopartículas , Administração Oral , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Feminino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade
2.
ACS Omega ; 6(7): 4656-4662, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644572

RESUMO

Idiosyncratic drug reactions are unpredictable adverse reactions. Although most such adverse reactions appear to be immune mediated, their exact mechanism(s) remain elusive. The idiosyncratic drug reaction most associated with serious consequences is idiosyncratic drug-induced liver injury (IDILI). We have developed a mouse model of amodiaquine (AQ)-induced liver injury that reflects the clinical characteristics of IDILI in humans. This was accomplished by impairing immune tolerance by using PD-1-/- mice and an antibody against CTLA-4. PD-1 and CTLA-4 are known negative regulators of lymphocyte activation, which promote immune tolerance. Immune checkpoint inhibitors have become important tools for the treatment of cancer. However, as in our model, immune checkpoint inhibitors increase the risk of IDILI with drugs that have an incidence of causing liver injury. Agents such as 1-methyl-d-tryptophan (D-1-MT), an inhibitor of the immunosuppressive indoleamine 2,3-dioxygenase (IDO) enzyme, have also been proposed as anti-cancer treatments. Another possible risk factor for the induction of an immune response is the release of danger-associated molecular patterns (DAMPs). Acetaminophen (APAP) is known to cause acute liver injury, and it is likely to cause the release of DAMPs. Therefore, either of these agents could increase the risk of IDILI, although through different mechanisms. If true, then this would have clinical implications. We found that co-treatment with D-1-MT paradoxically decreased liver injury in our model, and although APAP appeared to slightly increase AQ-induced liver injury, the difference was not significant. Such results highlight the complexity of the immune response, which makes potential interactions difficult to predict.

3.
Adv Healthc Mater ; 9(16): e2000536, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597571

RESUMO

Targeting areas of inflammation offers potential therapeutic and diagnostic benefits by maximizing drug and imaging marker on-target effects while minimizing systemic exposure that can be associated with adverse side effects. This strategy is particularly beneficial in the management of inflammatory bowel disease (IBD). Here an inflammation-targeting (IT) approach based on heparin-coated human serum albumin nanoparticles (HEP-HSA NPs) that utilize the increased intestinal permeability and changes in electrostatic interaction at the site of intestinal inflammation is described. Using small-molecule and biologic drugs as a model for drug combination, the HEP-HSA NPs demonstrate the capacity to load both drugs simultaneously; the dual-drug loaded HEP-HSA NPs exhibit a higher anti-inflammatory effect than both of the single-drug loaded NPs in vitro and selectively bind to inflamed intestine after enema administration in vivo in a murine model of colitis. Importantly, analyses of the physicochemical characteristics and targeting capacities of these NPs indicate that HEP coating modulates NP binding to the inflamed intestine, providing a foundation for future IT-NP formulation development.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Portadores de Fármacos , Combinação de Medicamentos , Heparina , Humanos , Intestinos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...