Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7224, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332838

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Risk Anal ; 38(4): 666-679, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28853163

RESUMO

We test here the risk communication proposition that explicit expert acknowledgment of uncertainty in risk estimates can enhance trust and other reactions. We manipulated such a scientific uncertainty message, accompanied by probabilities (20%, 70%, implicit ["will occur"] 100%) and time periods (10 or 30 years) in major (≥magnitude 8) earthquake risk estimates to test potential effects on residents potentially affected by seismic activity on the San Andreas fault in the San Francisco Bay Area (n = 750). The uncertainty acknowledgment increased belief that these specific experts were more honest and open, and led to statistically (but not substantively) significant increases in trust in seismic experts generally only for the 20% probability (vs. certainty) and shorter versus longer time period. The acknowledgment did not change judged risk, preparedness intentions, or mitigation policy support. Probability effects independent of the explicit admission of expert uncertainty were also insignificant except for judged risk, which rose or fell slightly depending upon the measure of judged risk used. Overall, both qualitative expressions of uncertainty and quantitative probabilities had limited effects on public reaction. These results imply that both theoretical arguments for positive effects, and practitioners' potential concerns for negative effects, of uncertainty expression may have been overblown. There may be good reasons to still acknowledge experts' uncertainties, but those merit separate justification and their own empirical tests.

3.
Sci Rep ; 6: 28536, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27335317

RESUMO

The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.

4.
Nat Commun ; 6: 5934, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562609

RESUMO

Geodetic transients have been observed in various subduction zones. The 2011 Tohoku earthquake occurred in one of the most active subduction zones globally, the Japan Trench subduction zone (JTSZ). However, no geodetic transient (except afterslip and so on) had been reported in the JTSZ before the Tohoku earthquake. Here we show that a large transient event, with duration longer than any reported previously, occurred in the JTSZ preceding the Tohoku earthquake. We calculate tectonic deformations at Global Positioning System stations along the JTSZ by removing the effects of nearby M(w) 6-8 earthquakes. We identify temporal changes in these deformations, deriving 9-year deviation records from regular deformations due to slip deficit at the plate boundary. We perform an inversion of the deviations to obtain the source model of their root event. The relationship between the obtained transient event and Tohoku earthquake is shown through Coulomb stress change and seismic supercycle simulation.

5.
Science ; 309(5733): 462-4, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16020734

RESUMO

Devastating earthquakes occur on a megathrust fault that underlies the Tokyo metropolitan region. We identify this fault with use of deep seismic reflection profiling to be the upper surface of the Philippine Sea plate. The depth to the top of this plate, 4 to 26 kilometers, is much shallower than previous estimates based on the distribution of seismicity. This shallower plate geometry changes the location of maximum finite slip of the 1923 Kanto earthquake and will affect estimations of strong ground motion for seismic hazards analysis within the Tokyo region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...