Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9935, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705623

RESUMO

In the data obtained by laser interferometric gravitational wave detectors, transient noise with non-stationary and non-Gaussian features occurs at a high rate. This often results in problems such as detector instability and the hiding and/or imitation of gravitational-wave signals. This transient noise has various characteristics in the time-frequency representation, which is considered to be associated with environmental and instrumental origins. Classification of transient noise can offer clues for exploring its origin and improving the performance of the detector. One approach for accomplishing this is supervised learning. However, in general, supervised learning requires annotation of the training data, and there are issues with ensuring objectivity in the classification and its corresponding new classes. By contrast, unsupervised learning can reduce the annotation work for the training data and ensure objectivity in the classification and its corresponding new classes. In this study, we propose an unsupervised learning architecture for the classification of transient noise that combines a variational autoencoder and invariant information clustering. To evaluate the effectiveness of the proposed architecture, we used the dataset (time-frequency two-dimensional spectrogram images and labels) of the Laser Interferometer Gravitational-wave Observatory (LIGO) first observation run prepared by the Gravity Spy project. The classes provided by our proposed unsupervised learning architecture were consistent with the labels annotated by the Gravity Spy project, which manifests the potential for the existence of unrevealed classes.

2.
Rev Sci Instrum ; 87(1): 014502, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827334

RESUMO

The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

3.
Phys Rev Lett ; 114(16): 161102, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955042

RESUMO

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.

4.
J Opt Soc Am A Opt Image Sci Vis ; 31(1): 81-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561943

RESUMO

The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity.

5.
Opt Express ; 21(24): 29578-91, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514509

RESUMO

All-reflective interferometer configurations have been proposed for the next generation of gravitational wave detectors, with diffractive elements replacing transmissive optics. However, an additional phase noise creates more stringent conditions for alignment stability. A framework for alignment stability with the use of diffractive elements was required using a Gaussian model. We successfully create such a framework involving modal decomposition to replicate small displacements of the beam (or grating) and show that the modal model does not contain the phase changes seen in an otherwise geometric planewave approach. The modal decomposition description is justified by verifying experimentally that the phase of a diffracted Gaussian beam is independent of the beam shape, achieved by comparing the phase change between a zero-order and first-order mode beam. To interpret our findings we employ a rigorous time-domain simulation to demonstrate that the phase changes resulting from a modal decomposition are correct, provided that the coordinate system which measures the phase is moved simultaneously with the effective beam displacement. This indeed corresponds to the phase change observed in the geometric planewave model. The change in the coordinate system does not instinctively occur within the analytical framework, and therefore requires either a manual change in the coordinate system or an addition of the geometric planewave phase factor.

6.
Phys Rev Lett ; 103(17): 171101, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19905742

RESUMO

The displacement- and frequency-noise-free interferometer (DFI) is a multiple laser interferometer array for gravitational-wave detection free from both the displacement noise of optics and laser frequency noise. So far, partial experimental demonstrations of the DFI have been done in 2D table top experiments. In this Letter, we report the complete demonstration of a 3D DFI. The DFI consists of four Mach-Zehnder interferometers with four mirrors and two beam splitters The attained maximum suppression of the displacement noise of both mirrors and beam splitters was 40 dB at about 50 MHz. The nonvanishing DFI response to a gravitational wave was successfully confirmed using multiple electro-optic modulators and computing methods.

7.
Phys Rev Lett ; 98(14): 141101, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17501262

RESUMO

We have demonstrated displacement- and frequency-noise-free laser interferometry (DFI) by partially implementing a recently proposed optical configuration using bidirectional Mach-Zehnder interferometers (MZIs). This partial implementation, the minimum necessary to be called DFI, has confirmed the essential feature of DFI: the combination of two MZI signals can be carried out in a way that cancels displacement noise of the mirrors while maintaining gravitational-wave signals. The attained maximum displacement-noise suppression was 45 dB.

8.
Phys Rev Lett ; 97(15): 151103, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-17155314

RESUMO

We propose a class of displacement- and laser-noise-free gravitational-wave-interferometer configurations, which does not sense nongeodesic mirror motion and laser noise, but provides a nonvanishing gravitational-wave signal. Our interferometers consist of four mirrors and two beam splitters, which form four Mach-Zehnder interferometers. By contrast to previous works, no composite mirrors with multiple reflective surfaces are required. Each mirror in our configuration is sensed redundantly, by at least two pairs of incident and reflected beams. Displacement- and laser-noise-free detection is achieved when output signals from these four interferometers are combined appropriately. Our 3-dimensional interferometer configuration has a low-frequency response proportional to f2, which is better than the f3 achievable by previous 2-dimensional configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...