Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884647

RESUMO

Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used in flow cytometry for fast and sensitive identification and collection of cells expressing the target surface antigen. Nonetheless, current approaches to fluorescent labeling of antibodies most often use random modification, along with a few rather sophisticated site-specific techniques. The aim of our work was to develop a procedure for fluorescent labeling of immunoglobulin G via periodate oxidation of antibody glycans, followed by oxime ligation with fluorescent oxyamines. Here, we report a novel technique based on an in situ oxime ligation of ethoxyethylidene-protected aminooxy compounds with oxidized antibody glycans. The approach is suitable for easy modification of any immunoglobulin G, while ensuring that antigen-binding domains remain intact, thus revealing various possibilities for fluorescent probe design. The technique was used to label an antibody to PRAME, a cancer-testis protein overexpressed in a number of cancers. A 6H8 monoclonal antibody to the PRAME protein was directly modified with protected-oxyamine derivatives of fluorescein-type dyes (FAM, Alexa488, BDP-FL); the stoichiometry of the resulting conjugates was characterized spectroscopically. The immunofluorescent conjugates obtained were applied to the analysis of bone marrow samples from patients with oncohematological diseases and demonstrated high efficiency in flow cytometry quantification. The approach can be applied for the development of various immunofluorescent probes for detection of diagnostic and prognostic markers, which can be useful in anticancer therapy.


Assuntos
Anticorpos Monoclonais/química , Antígenos de Neoplasias/análise , Imunofluorescência/métodos , Corantes Fluorescentes/química , Imunoconjugados/química , Leucemia Mieloide Aguda/diagnóstico , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo
2.
Langmuir ; 36(49): 15119-15127, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33264013

RESUMO

Production of small discrete DNA nanostructures containing covalent junctions requires reliable methods for the synthesis and assembly of branched oligodeoxynucleotide (ODN) conjugates. This study reports an approach for self-assembly of hard-to-obtain primitive discrete DNA nanostructures-"nanoethylenes", dimers formed by double-stranded oligonucleotides using V-shaped furcate blocks. We scaled up the synthesis of V-shaped oligonucleotide conjugates using pentaerythritol-based diazide and alkyne-modified oligonucleotides using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and optimized the conditions for "nanoethylene" formation. Next, we designed nanoethylene-based "nanomonomers" containing pendant adapters. They demonstrated smooth and high-yield spontaneous conversion into the smallest cyclic product, DNA tetragon aka "nano-methylcyclobutane". Formation of DNA nanostructures was confirmed using native polyacrylamide gel electrophoresis (PAGE) and atomic force microscopy (AFM) and additionally studied by molecular modeling. The proposed facile approach to discrete DNA nanostructures using precise adapter-directed association expands the toolkit for the realm of DNA origami.


Assuntos
Nanoestruturas , Azidas , DNA , Microscopia de Força Atômica , Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...