Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1891-1894, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891656

RESUMO

The analysis of clinical questionnaire data comes with many inherent challenges. These challenges include the handling of data with missing fields, as well as the overall interpretation of a dataset with many fields of different scales and forms. While numerous methods have been developed to address these challenges, they are often not robust, statistically sound, or easily interpretable. Here, we propose a latent factor modeling framework that extends the principal component analysis for both categorical and quantitative data with missing elements. The model simultaneously provides the principal components (basis) and each patients' projections on these bases in a latent space. We show an application of our modeling framework through Irritable Bowel Syndrome (IBS) symptoms, where we find correlations between these projections and other standardized patient symptom scales. This latent factor model can be easily applied to different clinical questionnaire datasets for clustering analysis and interpretable inference.


Assuntos
Síndrome do Intestino Irritável , Humanos , Análise de Componente Principal , Inquéritos e Questionários
2.
J Biol Chem ; 285(26): 20202-12, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20363741

RESUMO

Intestinal fibrosis is a major complication of Crohn disease (CD), but the precise mechanism by which it occurs is incompletely understood. As a result, specific therapies to halt or even reverse fibrosis have not been explored. Here, we evaluated the contribution of epithelial to mesenchymal transition (EMT) to intestinal fibrosis associated with a mouse model of CD and also human inflammatory bowel disease. Mice administered intrarectal 2,4,6-trinitrobenzene sulfonic acid (TNBS) develop inflammation and fibrosis that resembles CD both histologically and by immunologic profile. We utilized this model to molecularly probe the contribution of EMT to intestinal fibrosis. Additionally, we utilized double-transgenic VillinCre;R26Rosa-lox-STOP-lox-LacZ mice, in which removal of the STOP cassette by Cre recombinase in villin(+) intestinal epithelial cells activates permanent LacZ expression, to lineage trace epithelial cells that might undergo EMT upon TNBS administration. TNBS-induced fibrosis is associated with the presence of a significant number of cells that express both epithelial and mesenchymal markers. In the lineage tagged transgenic mice, the appearance of LacZ(+) cells that also express the fibroblast marker FSP1 unequivocally demonstrates EMT. Transforming growth factor (TGF)-beta1, a known inducer of EMT in epithelial cells, induces EMT in rat intestinal epithelial cells in vitro, and bone morphogenic protein-7, an antagonist of TGF-beta1, inhibits EMT and fibrosis both in vitro and in the TNBS-treated mice. Our study demonstrates that EMT contributes to intestinal fibrosis associated with the TNBS-induced model of Crohn colitis and that inhibition of TGF-beta1 with recombinant human bone morphogenic protein-7 prevents this process and prevents fibrosis.


Assuntos
Células Epiteliais/patologia , Fibroblastos/patologia , Intestinos/patologia , Mesoderma/patologia , Animais , Proteína Morfogenética Óssea 7/farmacologia , Caderinas/metabolismo , Linhagem Celular , Células Cultivadas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Óperon Lac/genética , Masculino , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/metabolismo , beta-Galactosidase/metabolismo
3.
Gastroenterology ; 137(3): 914-23, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19482027

RESUMO

BACKGROUND & AIMS: Saccharomyces boulardii (Sb) is a probiotic yeast with anti-inflammatory and anti-microbial activities and has been used for decades in the prevention and treatment of a variety of human gastrointestinal disorders. We reported previously that Sb modulates host inflammatory responses through down-regulation of extracellular signal-regulated kinase (Erk)1/2 activities both in vitro and in vivo. The aim of this study was to identify upstream mediators responsible for extracellular signal-regulated kinase (Erk)1/2 inactivation and to examine the effects of Sb on tumor development in Apc(Min) mice. METHODS: Signaling studies of colon cancer cells were done by western blot. Cell proliferation was measured by MTS and BrdU assay. Apoptosis was examined by flow cytometry, tunel assay and caspase assay. Apc(Min) mice were orally given Sb for 9 weeks before sacrifice for tumor analysis. RESULTS: We found that the epidermal growth factor receptor (EGFR) was deactivated upon exposure to Sb, leading to inactivation of both the EGFR-Erk and EGFR-Akt pathways. In human colonic cancer cells, Sb prevented EGF-induced proliferation, reduced cell colony formation, and promoted apoptosis. HER-2, HER-3, and insulin-like growth factor-1 receptor were also found to be inactivated by Sb. Oral intake of Sb reduced intestinal tumor growth and dysplasia in C57BL/6J Min/+ (Apc(Min)) mice. CONCLUSIONS: Thus, in addition to its anti-inflammatory effects, Sb inhibits EGFR and other receptor tyrosine kinase signaling and thereby may also serve a novel therapeutic or prophylactic role in intestinal neoplasia.


Assuntos
Neoplasias do Colo/metabolismo , Receptores ErbB/metabolismo , Probióticos/farmacologia , Saccharomyces , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Receptores ErbB/antagonistas & inibidores , Genes APC , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
4.
FASEB J ; 22(8): 2740-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18477764

RESUMO

The association between dietary obesity and mesolimbic systems that regulate hedonic aspects of feeding is currently unresolved. In the present study, we examined differences in baseline and stimulated central dopamine levels in obesity-prone (OP) and obesity-resistant (OR) rats. OP rats were hyperphagic and showed a 20% weight gain over OR rats at wk 15 of age, when fed a standard chow diet. This phenotype was associated with a 50% reduction in basal extracellular dopamine, as measured by a microdialysis probe in the nucleus accumbens, a projection site of the mesolimbic dopamine system that has been implicated in food reward. Similar defects were also observed in younger animals (4 wk old). In electrophysiology studies, electrically evoked dopamine release in slice preparations was significantly attenuated in OP rats, not only in the nucleus accumbens but also in additional terminal sites of dopamine neurons such as the accumbens shell, dorsal striatum, and medial prefrontal cortex, suggesting that there may be a widespread dysfunction in mechanisms regulating dopamine release in this obesity model. Moreover, dopamine impairment in OP rats was apparent at birth and associated with changes in expression of several factors regulating dopamine synthesis and release: vesicular monoamine transporter-2, tyrosine hydroxylase, dopamine transporter, and dopamine receptor-2 short-form. Taken together, these results suggest that an attenuated central dopamine system would reduce the hedonic response associated with feeding and induce compensatory hyperphagia, leading to obesity.


Assuntos
Dopamina/fisiologia , Exocitose/fisiologia , Sistema Límbico/fisiopatologia , Obesidade/fisiopatologia , Animais , Sequência de Bases , Primers do DNA/genética , Dopamina/metabolismo , Estimulação Elétrica , Feminino , Expressão Gênica , Técnicas In Vitro , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
5.
J Biol Chem ; 281(34): 24449-54, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16816386

RESUMO

Saccharomyces boulardii (Sb), a probiotic yeast, protects against intestinal injury and inflammation caused by a wide variety of enteric pathogens, including Clostridium difficile. Given the broad range of protective effects of Sb in multiple gastrointestinal disorders, we hypothesize that Sb modulates host signaling pathways involved in intestinal inflammatory responses. In this study, we found that Sb culture supernatant (SbS) inhibits interleukin-8 production induced by C. difficile toxin A or IL-1beta in human colonocyte NCM460 cells in a dose-dependent fashion. Furthermore, SbS inhibited IL-1beta and toxin A induced Erk1/2 and JNK/SAPK but not p38 activation in NCM460 cells. To test whether this inhibition also occurs in vivo, we used a previously established mouse ileal loop model. On its own, SbS had no significant effect on basal fluid secretion or intestinal histology. However, Erk1/2 activation was significantly inhibited by SbS in toxin A exposed mouse ileal mucosa. In control loops, toxin A increased fluid secretion (2.2-fold), histological score (3.3-fold), and levels of the chemokine KC (4.5-fold). SbS pretreatment completely normalized toxin A mediated fluid secretion (p < 0.01), and histopathologic changes (p < 0.01) and substantially inhibited toxin A-associated KC increases (p < 0.001). In summary, the probiotic yeast S. boulardii inhibits C. difficile toxin A-associated enteritis by blocking the activation of Erk1/2 MAP kinases. This study indicates a new mechanism whereby Sb protects against intestinal inflammation and supports the hypothesis that Sb modulates host inflammatory signaling pathways to exert its beneficial effects.


Assuntos
Enterite/prevenção & controle , Mucosa Intestinal/microbiologia , Sistema de Sinalização das MAP Quinases , Probióticos , Saccharomyces/fisiologia , Animais , Toxinas Bacterianas/toxicidade , Linhagem Celular , Enterite/induzido quimicamente , Enterite/microbiologia , Enterotoxinas/toxicidade , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Ratos
6.
Mayo Clin Proc ; 81(5): 653-60, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16706263

RESUMO

Ghrelin, a peptide hormone originally identified as the endogenous ligand of the growth hormone secretagogue receptor, is secreted primarily from the stomach and secondarily from the small intestine and colon. Ghrelin may also be expressed in the pancreatic islets, hypothalamus, pituitary, and several tissues in the periphery. The growth hormone secretagogue receptor is widely expressed, suggesting diverse physiologic roles for ghrelin. A growing body of evidence suggests that, in addition to its predictable effect on growth hormone secretion, ghrelin has an important role in the short-term regulation of appetite and the long-term regulation of energy balance and glucose homeostasis. Recent studies have implicated ghrelin in the regulation of gastrointestinal, cardiovascular, and immune function and have suggested a role for ghrelin in bone physiology. The identification of obestatin, a novel peptide hormone derived from the same gene as ghrelin, has recently added further complexity to ghrelin physiology. Obestatin appears to have actions opposite of ghrelin on energy homeostasis and gastrointestinal function. Despite the rapid progress, many questions remain unanswered, including the regulation of ghrelin and obestatin secretion, the downstream pathways that mediate their effects, and their precise physiologic endocrine and paracrine roles. This review presents data on ghrelin structure, expression, and function, with emphasis placed on human studies, highlighting areas that require future investigation and providing speculation about potential clinical applications of ghrelin agonists or antagonists.


Assuntos
Hormônio do Crescimento/metabolismo , Hormônios Peptídicos/fisiologia , Regulação do Apetite/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Mucosa Gástrica/metabolismo , Motilidade Gastrointestinal/fisiologia , Grelina , Homeostase/fisiologia , Humanos , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Hormônios Hipofisários/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Grelina
7.
Diabetes ; 55(2): 428-34, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16443777

RESUMO

Ablation of the hypothalamic peptide, melanin-concentrating hormone (MCH), leads to a lean phenotype and resistance to diet-induced obesity. Observation of MCH(-/-) mice at older ages suggested that these effects persist in mice >1 year old. Leanness secondary to caloric restriction is known to be associated with improved glucose tolerance as well as an overall increase in life span. Because the MCH(-/-) model represents leanness secondary to increased energy expenditure rather than caloric restriction, we were interested in determining whether this model of leanness would be associated with beneficial metabolic effects at older ages. To assess the effects of MCH ablation over a more prolonged period, we monitored male and female MCH(-/-) mice up to 19 months. The lean phenotype of MCH(-/-) mice persisted over the duration of the study. At 19 months, MCH(-/-) male and female mice weighed 23.4 and 30.8% less than their wild-type counterparts, a result of reduced fat mass in MCH(-/-) mice. Aged MCH(-/-) mice exhibited better glucose tolerance and were more insulin sensitive compared with wild-type controls. Aging-associated decreases in locomotor activity were also attenuated in MCH(-/-) mice. We also evaluated two molecules implicated in the pathophysiology of aging, p53 and silent inflammatory regulator 2 (Sir2). We found that expression of the tumor suppressor protein p53 was higher in MCH(-/-) mice at 9 and 19 months of age. In contrast, expression of Sir2 was unchanged. In aggregate, these findings suggest that MCH ablation improves the long-term outcome for several indicators of the aging process.


Assuntos
Envelhecimento/fisiologia , Deleção de Genes , Hormônios Hipotalâmicos/deficiência , Hormônios Hipotalâmicos/metabolismo , Resistência à Insulina/genética , Melaninas/deficiência , Melaninas/metabolismo , Hormônios Hipofisários/deficiência , Hormônios Hipofisários/metabolismo , Aumento de Peso/genética , Envelhecimento/genética , Animais , Metabolismo Energético , Feminino , Hormônios Hipotalâmicos/genética , Masculino , Melaninas/genética , Camundongos , Atividade Motora , Fenótipo , Hormônios Hipofisários/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Brain Res ; 961(2): 255-60, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12531492

RESUMO

The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is expressed in brown adipose tissue, brain, heart and kidney as well as cold-exposed skeletal muscle. In liver, white and brown adipose tissue, PGC-1alpha expression is regulated in a manner suggesting a role in energy homeostasis. To characterize PGC-1alpha expression in the rodent brain and to determine brain PGC-1alpha regulation, we used in situ hybridization histochemistry in C57Bl/6J mice and Sprague-Dawley rats. We found that PGC-1alpha is widely expressed in brain areas, including in the olfactory bulb, cerebral cortex, the diagonal band of Broca, the medial septal nucleus, reticular thalamic nucleus, the striatum and globus pallidus, the hippocampus, the substantia nigra, the mesencephalic nucleus of the trigeminal nerve, the cochlear nucleus and the superior olivary complex. In contrast, PGC-1alpha expression was absent in the hypothalamus. To evaluate PGC-1alpha expression under different physiologic states in these various brain areas, we examined expression with fasting, leptin treatment and cold exposure (4 h at 4 degrees C) and found no change, nor was expression changed in the brain of the leptin-deficient ob/ob mice and the hyperleptinemic UCP-DTA mice. Hence, PGC-1alpha is widely expressed in the rodent brain, but is not regulated by states of caloric deficiency, leptin, obesity or cold exposure. Its functional role in the brain requires further study.


Assuntos
Encéfalo/metabolismo , Temperatura Baixa , Jejum/metabolismo , Leptina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Hibridização In Situ , Leptina/administração & dosagem , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...