Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(23): 13403-13411, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304547

RESUMO

To study the genetic diversity and structure of the forest species Pterocarpus erinaceus Poir., seventeen polymorphic nuclear microsatellite markers were isolated and characterized, using next-generation sequencing. Three hundred and sixty-five (365) individuals were analyzed within fifteen (15) West African populations. The number of alleles for these loci varied from 4 to 30, and the heterozygosity varied from 0.23 to 0.82. The seventeen (17) primers designed here will allow characterizing the genetic diversity of this threaten species on its natural stands and to better understand the population differentiation mechanisms shaping it.

2.
Heliyon ; 6(6): e04031, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32518851

RESUMO

Pterocarpus erinaceus is a native tree species of the Guineo-Sudanian and Sudano-Sahelian zones where natural stands are under constant pressure and heavily exploited for timber, animal feeding and others uses. A part from the overexploitation, climate change could also become a serious threat to the species natural distribution. For that purposes, this study aims to assess the vulnerability of P. erinaceus potential niche to climate change within its natural distribution area in West Africa. Niche predictions are based on 6,981 natural occurrence of the species and 19 global bioclimatic variables available through WorldClim. The future niche of the species is predicted according to three concentration pathways (RCPs 2.6, 4.5 and 8.5) of BC model for 2050 and 2070, thanks to Maxent software. P. erinaceus is currently reported from Senegal to Cameroon. Its potential niche covers the Sudano-Sahelian zone and the Dahomey gap on approximately 17.42% of the total area of these countries. In general, the niche of the species is not sensitive to climate change, regardless of the climate scenario and the year. Compared to its initial niche, the niche of the species will increase from 22.33% to 43.61% in 2050 and from 27.12% to 53.61% in 2070. However, this ecological expansion observed mainly in the Gulf of Guinea, will be associated with a considerable decrease in the Sahel and central Nigeria. This study shows the importance of promoting the development of innovative silvicultural strategies for the extension and restoration of natural stands of P. erinaceus in order to meet sustainably the timber needs of the West African region. It helps also to strengthening the roles of natural forests in providing ecosystem services and mitigating climate change effects.

3.
Ann Bot ; 121(7): 1397-1410, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29596559

RESUMO

Background and aims: For a given genotype, the observed variability of tree forms results from the stochasticity of meristem functioning and from changing and heterogeneous environmental factors affecting biomass formation and allocation. In response to climate change, trees adapt their architecture by adjusting growth processes such as pre- and neoformation, as well as polycyclic growth. This is the case for the teak tree. The aim of this work was to adapt the plant model, GreenLab, in order to take into consideration both these processes using existing data on this tree species. Methods: This work adopted GreenLab formalism based on source-sink relationships at organ level that drive biomass production and partitioning within the whole plant over time. The stochastic aspect of phytomer production can be modelled by a Bernoulli process. The teak model was designed, parameterized and analysed using the architectural data from 2- to 5-year-old teak trees in open field stands. Key results: Growth and development parameters were identified, fitting the observed compound organic series with the theoretical series, using generalized least squares methods. Phytomer distributions of growth units and branching pattern varied depending on their axis category, i.e. their physiological age. These emerging properties were in accordance with the observed growth patterns and biomass allocation dynamics during a growing season marked by a short dry season. Conclusions: Annual growth patterns observed on teak, including shoot pre- and neoformation and polycyclism, were reproduced by the new version of the GreenLab model. However, further updating is discussed in order to ensure better consideration of radial variation in basic specific gravity of wood. Such upgrading of the model will enable teak ideotypes to be defined for improving wood production in terms of both volume and quality.


Assuntos
Lamiaceae/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Árvores/anatomia & histologia , Biomassa , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/metabolismo , Folhas de Planta/metabolismo , Processos Estocásticos , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...