Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Solid Earth ; 125(7): e2019JB019102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32999803

RESUMO

Stripe-like patterns of surface wave arrival angle deviations have been observed by several seismological studies around the world, but this phenomenon has not been explained so far. Here we test the hypothesis that systematic arrival angle deviations observed at the AlpArray broadband seismic network in Europe are interference patterns caused by diffraction of surface waves at single small-scaled velocity anomalies. We use the observed pattern of Rayleigh waves from two earthquakes under the Southern Atlantic Ocean, and we fit this pattern with theoretical arrival angles derived by a simple modeling approach describing the interaction of a seismic wavefield with small anomalies. A grid search inversion scheme is implemented, which indicates that the anomaly is located in Central Africa, with its head under Cameroon. Moreover, the inversion enables the characterization of the anomaly: The anomaly is inferred to be between 320 and 420 km wide, matching in length the 2,500 km long upper mantle low-velocity region under the volcano-capped swells of the Cameroon volcanic line. We show that this approach can be generally used for studying the upper mantle anomalies worldwide.

2.
Sci Rep ; 9(1): 13027, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506593

RESUMO

On September 1st, 2018 a devastating explosion occurred on the facility of an oil refinery near Ingolstadt, Germany. We analyzed data of 400 permanent and temporary seismic stations and find strong seismo-acoustic signals on more than 80 seismic stations. The infrasound signal is detectable on seismic stations within 10-350 km from the source, with 40 km spatial resolution. We confirm the explosion site both by the seismic and seismo-acoustic arrivals. Apart from seismic P- and S-waves, we identified three separate acoustic phases with celerities of 332, 292, and 250 m/s, respectively, each of which has a particular spatial pattern of positive detections at the ground. Seismo-acoustic amplitudes are strongly affected by the type of seismic installation but still allow insight into regional infrasound attenuation. Our observations likely represent tropospheric, stratospheric, and thermospheric phases. We performed 3D acoustic ray tracing to validate our findings. Tropospheric and thermospheric arrivals are to some extent reproduced by the atmospheric model. However, ray tracing does not predict the observed acoustic stratospheric ducts. Our findings suggest that small-scale variations had considerable impact on the propagation of infrasound generated by the explosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...