Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 185-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664730

RESUMO

Lactate dehydrogenase (LDH) is an essential metabolic enzyme that catalyzes the interconversion of pyruvate and lactate using NADH/NAD(+) as a co-substrate. Many cancer cells exhibit a glycolytic phenotype known as the Warburg effect, in which elevated LDH levels enhance the conversion of glucose to lactate, making LDH an attractive therapeutic target for oncology. Two known inhibitors of the human muscle LDH isoform, LDHA, designated 1 and 2, were selected, and their IC50 values were determined to be 14.4 ± 3.77 and 2.20 ± 0.15 µM, respectively. The X-ray crystal structures of LDHA in complex with each inhibitor were determined; both inhibitors bind to a site overlapping with the NADH-binding site. Further, an apo LDHA crystal structure solved in a new space group is reported, as well as a complex with both NADH and the substrate analogue oxalate bound in seven of the eight molecules and an oxalate only bound in the eighth molecule in the asymmetric unit. In this latter structure, a kanamycin molecule is located in the inhibitor-binding site, thereby blocking NADH binding. These structures provide insights into LDHA enzyme mechanism and inhibition and a framework for structure-assisted drug design that may contribute to new cancer therapies.


Assuntos
L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/química , Neoplasias/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Simulação de Acoplamento Molecular , NAD/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácido Oxálico/metabolismo , Conformação Proteica
2.
Mol Microbiol ; 90(4): 898-918, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24106767

RESUMO

Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera-like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co-regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large ß-sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side-chains at one end and structural homology to the pore-forming proteins perfringolysin O and α-haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.


Assuntos
Escherichia coli Enterotoxigênica/química , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Células CACO-2 , Sequência Consenso , Cristalografia por Raios X , Escherichia coli Enterotoxigênica/genética , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Óperon , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
3.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 4): 513-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519659

RESUMO

Type IV pili are long thin surface-displayed polymers of the pilin subunit that are present in a diverse group of bacteria. These multifunctional filaments are critical to virulence for pathogens such as Vibrio cholerae, which use them to form microcolonies and to secrete the colonization factor TcpF. The type IV pili are assembled from pilin subunits by a complex inner membrane machinery. The core component of the type IV pilus-assembly platform is an integral inner membrane protein belonging to the GspF superfamily of secretion proteins. These proteins somehow convert chemical energy from ATP hydrolysis by an assembly ATPase on the cytoplasmic side of the inner membrane to mechanical energy for extrusion of the growing pilus filament out of the inner membrane. Most GspF-family inner membrane core proteins are predicted to have N-terminal and central cytoplasmic domains, cyto1 and cyto2, and three transmembrane segments, TM1, TM2 and TM3. Cyto2 and TM3 represent an internal repeat of cyto1 and TM1. Here, the 1.88 Å resolution crystal structure of the cyto1 domain of V. cholerae TcpE, which is required for assembly of the toxin-coregulated pilus, is reported. This domain folds as a monomeric six-helix bundle with a positively charged membrane-interaction face at one end and a hydrophobic groove at the other end that may serve as a binding site for partner proteins in the pilus-assembly complex.


Assuntos
Proteínas de Bactérias/química , Toxina da Cólera/fisiologia , Fímbrias Bacterianas/química , Fímbrias Bacterianas/fisiologia , Proteínas de Membrana/química , Vibrio cholerae/química , Vibrio cholerae/fisiologia , Proteínas de Bactérias/fisiologia , Toxina da Cólera/química , Cristalografia por Raios X , Citoplasma/química , Proteínas de Membrana/fisiologia , Multimerização Proteica , Estrutura Terciária de Proteína
4.
J Bacteriol ; 195(7): 1360-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23175654

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a bacterial pathogen that causes diarrhea in children and travelers in developing countries. ETEC adheres to host epithelial cells in the small intestine via a variety of different pili. The CS1 pilus is a prototype for a family of related pili, including the CFA/I pili, present on ETEC and other Gram-negative bacterial pathogens. These pili are assembled by an outer membrane usher protein that catalyzes subunit polymerization via donor strand complementation, in which the N terminus of each incoming pilin subunit fits into a hydrophobic groove in the terminal subunit, completing a ß-sheet in the Ig fold. Here we determined a crystal structure of the CS1 major pilin subunit, CooA, to a 1.6-Å resolution. CooA is a globular protein with an Ig fold and is similar in structure to the CFA/I major pilin CfaB. We determined three distinct negative-stain electron microscopic reconstructions of the CS1 pilus and generated pseudoatomic-resolution pilus structures using the CooA crystal structure. CS1 pili adopt multiple structural states with differences in subunit orientations and packing. We propose that the structural perturbations are accommodated by flexibility in the N-terminal donor strand of CooA and by plasticity in interactions between exposed flexible loops on adjacent subunits. Our results suggest that CS1 and other pili of this class are extensible filaments that can be stretched in response to mechanical stress encountered during colonization.


Assuntos
Escherichia coli Enterotoxigênica/química , Escherichia coli Enterotoxigênica/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Sequência de Aminoácidos , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular
5.
J Biol Chem ; 287(43): 36258-72, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22942280

RESUMO

Vibrio cholerae colonize the small intestine where they secrete cholera toxin, an ADP-ribosylating enzyme that is responsible for the voluminous diarrhea characteristic of cholera disease. The genes encoding cholera toxin are located on the genome of the filamentous bacteriophage, CTXϕ, that integrates as a prophage into the V. cholerae chromosome. CTXϕ infection of V. cholerae requires the toxin-coregulated pilus and the periplasmic protein TolA. This infection process parallels that of Escherichia coli infection by the Ff family of filamentous coliphage. Here we demonstrate a direct interaction between the N-terminal domain of the CTXϕ minor coat protein pIII (pIII-N1) and the C-terminal domain of TolA (TolA-C) and present x-ray crystal structures of pIII-N1 alone and in complex with TolA-C. The structures of CTXϕ pIII-N1 and V. cholerae TolA-C are similar to coliphage pIII-N1 and E. coli TolA-C, respectively, yet these proteins bind via a distinct interface that in E. coli TolA corresponds to a colicin binding site. Our data suggest that the TolA binding site on pIII-N1 of CTXϕ is accessible in the native pIII protein. This contrasts with the Ff family phage, where the TolA binding site on pIII is blocked and requires a pilus-induced unfolding event to become exposed. We propose that CTXϕ pIII accesses the periplasmic TolA through retraction of toxin-coregulated pilus, which brings the phage through the outer membrane pilus secretin channel. These data help to explain the process by which CTXϕ converts a harmless marine microbe into a deadly human pathogen.


Assuntos
Bacteriófagos/química , Proteínas do Capsídeo/química , Vibrio cholerae/virologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Toxina da Cólera/química , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Viral/fisiologia , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Vibrio cholerae/química , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Integração Viral/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-22442223

RESUMO

The type IV pili of nontypeable Haemophilus influenzae (NTHi) are involved in twitching motility, adherence, competence and biofilm formation. They are potential virulence factors for this important human pathogen and are thus considered to be vaccine targets. To characterize these pili, an attempt to solve the atomic structure of the major pilin subunit PilA was initiated. A 1.73 Å resolution X-ray diffraction data set was collected from native N-terminally truncated PilA (ΔN-PilA). Data processing indicated a hexagonal crystal system, which was determined to belong to space group P6(1) or P6(5) based on the systematic absences and near-perfect twinning of the crystal. The unit-cell parameters were a = b = 68.08, c = 197.03 Å with four molecules in the asymmetric unit, giving a solvent content of 50%. Attempts to solve the ΔN-PilA structure by molecular replacement with existing type IV pilin and type II secretion pseudopilin structures are in progress.


Assuntos
Proteínas de Bactérias/química , Haemophilus influenzae/química , Cristalização , Expressão Gênica
7.
J Bacteriol ; 194(10): 2725-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22447901

RESUMO

The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.


Assuntos
Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Fímbrias/classificação , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Escherichia coli Enterotoxigênica/genética , Proteínas de Fímbrias/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas , Vibrio cholerae
8.
J Biol Chem ; 286(51): 44254-44265, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22027840

RESUMO

Pilin proteins assemble into Type IV pili (T4P), surface-displayed bacterial filaments with virulence functions including motility, attachment, transformation, immune escape, and colony formation. However, challenges in crystallizing full-length fiber-forming and membrane protein pilins leave unanswered questions regarding pilin structures, assembly, functions, and vaccine potential. Here we report pilin structures of full-length DnFimA from the sheep pathogen Dichelobacter nodosus and FtPilE from the human pathogen Francisella tularensis at 2.3 and 1 Å resolution, respectively. The DnFimA structure reveals an extended kinked N-terminal α-helix, an unusual centrally located disulfide, conserved subdomains, and assembled epitopes informing serogroup vaccines. An interaction between the conserved Glu-5 carboxyl oxygen and the N-terminal amine of an adjacent subunit in the crystallographic dimer is consistent with the hypothesis of a salt bridge between these groups driving T4P assembly. The FtPilE structure identifies an authentic Type IV pilin and provides a framework for understanding the role of T4P in F. tularensis virulence. Combined results define a unified pilin architecture, specialized subdomain roles in pilus assembly and function, and potential therapeutic targets.


Assuntos
Proteínas de Bactérias/química , Vacinas Bacterianas/química , Dichelobacter nodosus/química , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Modelos Moleculares , Dados de Sequência Molecular , Polímeros/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
9.
J Mol Biol ; 409(2): 146-58, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21440558

RESUMO

Vibrio cholerae relies on two main virulence factors--toxin-coregulated pilus (TCP) and cholera toxin--to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Cólera/prevenção & controle , Intestinos/microbiologia , Fatores de Transcrição/química , Fatores de Transcrição/imunologia , Vibrio cholerae/patogenicidade , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cólera/imunologia , Cristalografia por Raios X , Modelos Animais de Doenças , Feminino , Immunoblotting , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Mutação/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Biblioteca de Peptídeos , Conformação Proteica , Taxa de Sobrevida , Fatores de Transcrição/genética
10.
Biochemistry ; 46(4): 954-64, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17240979

RESUMO

MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.


Assuntos
Liases/química , Liases/metabolismo , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Liases/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Biochemistry ; 46(4): 946-53, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17240978

RESUMO

Menaquinone biosynthesis is initiated by the conversion of chorismate to isochorismate, a reaction that is catalyzed by the menaquinone-specific isochorismate synthase, MenF. The catalytic mechanism of MenF has been probed using a combination of structural and biochemical studies, including the 2.5 A structure of the enzyme, and Lys190 has been identified as the base that activates water for nucleophilic attack at the chorismate C2 carbon. MenF is a member of a larger family of Mg2+ dependent chorismate binding enzymes catalyzing distinct chorismate transformations. The studies reported here extend the mechanism recently proposed for this enzyme family by He et al.: He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-85.


Assuntos
Escherichia coli/enzimologia , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Vitamina K 2/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Ácido Corísmico/metabolismo , Cristalografia por Raios X , DNA Bacteriano/genética , Escherichia coli/genética , Transferases Intramoleculares/genética , Cinética , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
J Biol Chem ; 281(51): 39285-39293, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17012233

RESUMO

Acyl carrier proteins play a central role in metabolism by transporting substrates in a wide variety of pathways including the biosynthesis of fatty acids and polyketides. However, despite their importance, there is a paucity of direct structural information concerning the interaction of ACPs with enzymes in these pathways. Here we report the structure of an acyl-ACP substrate bound to the Escherichia coli fatty acid biosynthesis enoyl reductase enzyme (FabI), based on a combination of x-ray crystallography and molecular dynamics simulation. The structural data are in agreement with kinetic studies on wild-type and mutant FabIs, and reveal that the complex is primarily stabilized by interactions between acidic residues in the ACP helix alpha2 and a patch of basic residues adjacent to the FabI substrate-binding loop. Unexpectedly, the acyl-pantetheine thioester carbonyl is not hydrogen-bonded to Tyr(156), a conserved component of the short chain alcohol dehydrogenase/reductase superfamily active site triad. FabI is a proven target for drug discovery and the present structure provides insight into the molecular determinants that regulate the interaction of ACPs with target proteins.


Assuntos
Proteína de Transporte de Acila/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Proteína de Transporte de Acila/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Tirosina/química
13.
J Mol Biol ; 329(1): 85-92, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12742020

RESUMO

Structural analysis of gelsolin domains 4-6 demonstrates that the two highest-affinity calcium ions that activate the molecule are in domains 5 and 6, one in each. An additional calcium site in domain 4 depends on subsequent actin binding and is seen only in the complex. The uncomplexed structure is primed to bind actin. Since the disposition of the three domains is similar in different crystal environments, either free or in complex with actin, the conformation in calcium is intrinsic to active gelsolin itself. Thus the actin-free structure shows that the structure with an actin monomer is a good model for an actin filament cap. The last 13 residues of domain 6 have been proposed to be a calcium-activated latch that, in the inhibited form only, links two halves of gelsolin. Comparison with the active structure shows that loosening of the latch contributes but is not central to activation. Calcium binding in domain 6 invokes a cascade of swapped ion-pairs. A basic residue swaps acidic binding partners to stabilise a straightened form of a helix that is kinked in inhibited gelsolin. The other end of the helix is connected by a loop to an edge beta-strand. In active gelsolin, an acidic residue in this helix breaks with its loop partner to form a new intrahelical ion-pairing, resulting in the breakage of the continuous sheet between domains 4 and 6, which is central to the inhibited conformation. A structural alignment of domain sequences provides a rationale to understand why the two calcium sites found here have the highest affinity amongst the five different candidate sites found in other gelsolin structures.


Assuntos
Sítios de Ligação , Cálcio/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Actinas/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/química , Sequência Conservada , Cristalografia por Raios X , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...